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Abstract 

This thesis addresses the parameterization of the heat and momentum transporting 
properties of eddy motions for use in three-dimensional, primitive equation, z-coordinate 
atmosphere and ocean models. Determining the transport characteristics of these eddies 
is fundamental to understanding their effect on the large-scale ocean circulation and 
global climate. 

The approach is to transform the primitive equations to yield the altered 'transformed 
Eulerian mean' (TEM) equations. The assumption is made that the eddy motions obey 
quasigeostrophic dynamics while the mean flow obeys the primitive equations. With this 
assumption, the TEM framework leads to the eddies appearing as one term, which acts 
as a body force in the momentum equations. This force manifests itself as a flux of 
potential vorticity (PV) - a quantity that incorporates both eddy momentum and heat 
transporting properties. Moreover, the dynamic velocities are those of the residual mean 
circulation, a much more relevant velocity for understanding heat and tracer transport. 

Closure for the eddy PV flux is achieved through a flux-gradient relationship, which 
directs the flux down the large scale PV gradient. For zonal flows, care is taken to ensure 
that the resulting force does not generate any net momentum, acting only to redistribute 
it. Neglect of relative vorticity fluxes in the PV flux yields the parameterization scheme 
of Gent and McWilliams. 

The approach is investigated by comparing a zonally-averaged parameterized model 
with a three dimensional eddy-resolving calculation of flow in a stress-driven channel. The 
stress at the upper surface is communicated down the water column to the bottom by 
eddy form drag. Moreover, lateral eddy momentum fluxes act to strengthen and sharpen 
the mean flow, transporting eastward momentum up its large scale gradient. Both the 
vertical momentum transfer and lateral, upgradient momentum transfer by eddies, are 
captured in the parameterized model. 

The advantages of this approach are demonstrated in two further zonal cases: 1) the 
spin-down of a baroclinic zone, and 2) the atmospheric jet stream. 

The time mean TEM approach and the eddy PV flux closure are explored in the 
context of an eddy-resolving closed basin flow which breaks the zonal symmetry. 



Decomposition of eddy PV fluxes into components associated with advective and 
dissipative effects suggest that the component associated with eddy flux divergence, and 
therefore forcing of the mean flow, is mainly directed down the large scale gradient 
and can be parameterized as before. Thus, the approach can be used to capture eddy 
transport properties for both zonal mean and time mean flows. 

The PV flux embodies both the eddy heat and momentum fluxes and so presents 
a more unified picture of their transferring properties. It therefore provides a powerful 
conceptual and practical framework for representing eddies in numerical models of the 
atmsophere and ocean. 

Thesis Supervisor: John Marshall, 
Professor, 
Program in Atmospheres, Oceans, and Climate 
Massachusetts Institute of Technology 
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Chapter 1 

Introduction 

This thesis addresses the challenge of adequately representing the transfer properties, and 

the forcing of the mean flow, by unresolved eddy processes in numerical ocean simulations. 

Numerical models have become an integral part of trying to understand the physical 

state of the climate system and for predicting climatic change. The underlying reason for 

this dependence on model simulations is a lack of a general theory of climate. This thesis 

will not directly address climate. Rather it will focus on the parametric representation 

of one climatic process that impacts the mean state, and the temporal variability, of the 

atmosphere and ocean. 

In the ocean, there are many scales of interest which contribute to its mean state. 

Due to our limited understanding of many of these processes and the limited speed of 

computers, it is not possible to include all of them in a single model. Physical processes 

are generally treated in one of three ways; they are either neglected, parameterized, or 

explicitly resolved. The questions being addressed in any given study should determine 

the physical processes which are necessary to include in the model, and therefore the nec- 

essary temporal and spatial resolutions in the model. However, in practice the available 

computer resources often dictate the resolutions used. 

Variability in the current world ocean occurs over a wide band of frequencies and 

length scales, with the dominant energy containing scale being associated with quasi- 

16 



geostrophic eddy variability (see section 1.1). These eddies are so-called because they 

are in approximate geostrophic balance. In addition, they manifest themselves at scales 

on the order of the local deformation radius. In the ocean, a typical Rossby radius of 

deformation is 50 km, while the ocean basin domain size is typically 5000 km (~ 100 

Rossby Radii). It is the representation of the transfer properties by the quasigeostrophic 

eddy field when it is not explicitly resolved, that is the focus of this thesis. 

The representation of eddies in large-scale, state-of-the-art ocean models remains 

one of the outstanding computational challenge in ocean climate modeling. Climate 

studies demand integration of large-scale ocean dynamics globally and for time periods 

of thousands of years. Because of limited computational resources, the most highly 

resolved of such calculations are currently performed at 2° resolution (~ 4 Rossby Radii) 

and so do not resolve the quasigeostrophic eddy field and its transport properties. To 

resolve the eddy field explicitly in models demands either that we embark on regional 

ocean circulation studies, or that we invest in global eddy-resolving numerical calculations 

that make rigorous demands on even the biggest and fastest computers available, see for 

example, Semtner and Chervin (1992). Therefore, for climate studies, the most appealing 

way forward is to parameterize through physical understanding, rather than resolve the 

transfers of heat, momentum, and vorticity on the eddy scale. Thus we see that there is 

currently a need for such parameterizations and they will continue to be exploited in the 

foreseeable future for long-term climate studies 

Even though it is acknowledged that quasigeostrophic eddies in the ocean have an 

important effect on property transports, their unresolved representation in numerical 

ocean models has until recently remained very elementary indeed. Recent approaches to 

parameterization in coarse resolution ocean models have seemingly yielded much success. 

They have resulted in dramatic improvements to water mass distributions, a sharper 

thermocline, and a limiting of deep water formation to regions where it is known to 

occur. However, these studies concentrate only on the eddy transfer of tracer quantities 

and heat while maintaining crude representations for momentum and vorticity transport. 
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They therefore fail to capture the full transfer by, and physics of, the quasigeostrophic 

eddies. 

The approach of this thesis is to employ theoretical and numerical techniques to study 

the problem of more completely parameterizing the eddy fluxes of heat and momentum in 

terms of the large-scale flow. Ideas utilized by atmospheric dynamicists for midlatitude 

synoptic scale eddies are applied to their oceanic counterpart to render a more thorough 

understanding and representation of eddy transfer properties. 

In order to motivate the problem in terms of its application to the real ocean, section 

1.1 provides an overview of characteristics of eddy variability in the world ocean and the 

primary eddy production mechanism of baroclinic instability. In section 1.2, a review of 

previous approaches to the parameterization problem is presented with a consideration 

of their respective strengths and weaknesses. Finally, in section 1.3 the thesis research is 

introduced. Based on a solid dynamical framework, this study elucidates property trans- 

fer on the quasigeostrophic eddy scale and, therefore, provides a method of representing 

(through parametrization) the eddy transfer characteristics that is more complete, than 

has previously been offered for ocean eddies. 

1.1    Eddy variability in the ocean 

The early paradigm of a world ocean circulation consisting of a large-scale, laminar, and 

steady flow has been replaced by a turbulent picture of ocean variability on all space 

and time scales (see, for example, review articles by Wunsch (1981) and Schmitz and 

Luyten (1991)). It is now understood that ocean variability is broadband (occurring on 

all time and space scales) with a peak in the energy associated with mesoscale eddies, 

with timescales on the order of 100 days and length scales of order 100 km (Wyrtki et 

al. (1976); Dantzler (1977); Richman et al. (1977)). Wyrtki et al. (1976) show that 

for the North Atlantic, the ratio of eddy to mean energy is 0(1) for the Gulf Stream 

region, while for the gyre interior this ratio is O(10) suggesting an intense, energetic 
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eddy field with velocities of order ten times those of the mean flow. The importance of 

eddy transport of tracers and heat has been suggested by observations in the Antarctic 

Circumpolar Current (Bryden (1979)), the equatorial Pacific (Bryden and Brady (1989)), 

and the North Atlantic (McWilliams et al. (1983)). Momentum transport by the eddies 

has also been documented to be important, particularly in the intense current regions. 

Webster (1965) showed that Gulf Stream eddies act as an energy source for the mean 

current, transferring momentum from the flanks of the Gulf Stream to the center of the 

jet. Hogg (1993) analyzed moored current arrays and determined that eddy vorticity 

fluxes were capable of driving two counter-rotating recirculation gyres either side of the 

Gulf Stream. 

Evidently, these mesoscale eddy motions are an important physical process in the 

ocean, and there is an obvious need for parameterization if they are not adequately 

resolved. A logical way forward would be to base a parameterization on physical un- 

derstanding of eddy dynamics. Unfortunately, because of sparse data coverage in the 

ocean, the dynamics of eddies and their associated transport properties have not been 

well understood. However, recent studies using altimetry data (Stammer and Wunsch 

(1994), Wunsch and Stammer (1995), Stammer (1997)) have provided much insight into 

global characteristics of ocean variability. These studies suggest that the variability is 

due to an instability process of the large-scale mean flow. 

Gill et al. (1974) present simple energetic arguments in a two-layer model which 

demonstrates that there is sufficient potential energy stored in the mean density field 

to account for the observed eddy kinetic energies. The method of potential energy re- 

lease that the authors advocate is in situ baroclinic instability of the mid-ocean. This 

mechanism was also proffered for mid-ocean energy release by Robinson and McWilliams 

(1974). Gill et al. (1974) argue that the ratio of available potential energy to mean ki- 

netic energy in the mid-ocean gyres is given by (L/LD) , where L is the lengthscale of the 

gyre, and LD is the Rossby radius of deformation. Hence the available potential energy 

of the wind-driven circulation exceeds the mean kinetic energy by a factor of (9(1000). 
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Whether the available potential energy is released through in situ baroclinic instability is 

still unclear and has been the subject of much debate. Pedlosky (1975), using theoretical 

arguments, points out that an upper bound for the eddy velocity produced by baroclinic 

instability is the velocity of the large-scale mean flow. He suggests (Pedlosky (1977)) a 

plausible, alternative mechanism of eddy energy penetration into the gyre interior; eddy 

generation occurring in the intense current regions and then radiation of this energy into 

the far-field of the gyre interior. 

Other mechanisms have been put forward to explain the observed ocean variabil- 

ity. Firstly, direct wind generation of ocean eddies is possible in regions of high atmo- 

spheric forcing. Second, Philander (1978) shows that a wind-induced barotropic variabil- 

ity should be enhanced at high latitudes because of the weaker stratification and thus 

deeper penetration scale. Thirdly an alternative mechanism is mean flow interaction 

with topography (e.g. Bretherton and Karweit (1975)). Lastly, barotropic instability 

generated through horizontal shears in the boundary current regions is another possibil- 

ity. However, it seems that baroclinic instability is the primary mechanism for the global 

patterns of variability and using ideas from baroclinic instability theory allows us to gain 

an understanding of the length and time scales of the oceanic eddy motions. 

Eddy length, and time scales 

The process of baroclinic instability has been the subject of a great many years of research. 

For a comprehensive review see Pierrehumbert and Swanson (1995). The pioneering work 

in the subject was done by Charney (1947) and Eady (1949). They used normal mode 

analysis to demonstrate that the structure of vertical modes could explain the existence 

of midlatitude cyclones in the atmosphere in terms of the instability of a baroclinic zonal 

current to infinitesimal wave disturbances. 

One description of the baroclinic instability mechanism is that of a 'wedge of instabil- 

ity', see, for example, Pedlosky (1987). Differential heating in the atmosphere establishes 

a meridional temperature gradient between the equator and the pole.  As the earth is 
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Figure 1.1: A schematic picture of the 'wedge of instability' description of baroclinic 
instability for the troposphere. Potential energy of the mean flow is released for the 
trajectory AB relative to the isopycnal slopes. 

rotating, geostrophic balance occurs where the resultant pressure gradient is balanced by 

the Coriolis force on westerly jets at midlatitudes in each hemisphere. The jets are said to 

be in thermal wind balance with the vertical shear of the flow being proportional to the 

meridional temperature gradient. As Figure 1.1 shows, the sloping temperature surfaces 

suggest a reservoir of potential energy. If a fluid parcel moves along the trajectory AB, 

it can release energy from this reservoir by transporting heat polewards and upwards. 

Simple analysis of the buoyancy forces shows that the parcel on such a trajectory will be 

further accelerated from its original position. This is the basic mechanism of baroclinic 

instability. However, this description can be slightly misleading as constraints on the 

fluid motion can prevent the balanced motion from following trajectories that further 

accelerate the initial displacement. Consequently the flow must satisfy certain criteria 

before instability can occur. The Charney-Stern theorem states that for flow (bounded 
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in the vertical) to be unstable the meridional potential vorticity gradient must change 

sign in the flow domain. For flow not bounded in the vertical the necessary criterion for 

instability is that the meridional gradient of potential vorticity in the flow is opposite to 

the meridional gradient of the potential temperature at the lower boundary.1 

The waves generated through baroclinic instability are required to have horizontal 

extent greater than the local deformation radius Lp in order to release potential energy 

from the mean flow. However length scales much larger than LD result in an ineffi- 

cient energy release (Pedlosky (1987)). Therefore horizontal scales on the order of the 

local deformation radius LD are preferred for the eddy motions generated by baroclinic 

instability. 

The e-folding growth rate a of the baroclinic waves in the Eady study scales as 

° ~ VM' (u> 
where / is the Coriolis parameter and Ri is the Richardson number of the large-scale 

flow: 
- iV2 

Rl ~   ((u,)*+(«,)')' (L2) 

where N2 is the square of the buoyancy frequency and (u, v) are the horizontal compo- 

nents of the geostrophic mean flow. The Richardson number is measure of the relative 

importance of the buoyancy to inertial terms in the flow and is essentially a measure of 

the ratio between the potential and kinetic energies. 

In figure 1.2 we plot a vertical average, over the upper 2000 m of the ocean, of the 

Eady growth rate, a, for the upper 2000m of the ocean computed by 

f   f°       1 

xIn quasigeostrophic theory, the lower boundary potential temperature gradient can be shown to be 
equivalent to a delta-function sheet of potential vorticity just interior to the boundary. The necessary 
condition for instability can therefore be couched in terms of potential vorticity alone. Use will be made 
of the equivalence of boundary temperature perturbations and interior potential vorticity distributions 
throughout the thesis. 
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Figure 1.2: The Eady growth rate, a calculated using (1.3) from Levitus (1994) annual 
climatology. The integral is computed from 2000 to 100m. The contour range is 1 x 10~6 

s_1 to 5 x 10~6 s_1 in intervals of 1 x 10~6 s_1. The fastest growth rates are present 
in the western boundary currents of the North Pacific and Atlantic basins and in the 
Southern Ocean. 

from the Levitus (1994) annual climatology. The o distribution is spatially inhomoge- 

neous with regions of intense growth of baroclinic waves. The buoyancy frequency can be 

considered to be constant to first order. Thus spatial variations in a are due to both the 

change in the Coriolis parameter with latitude and due to horizontal gradients in the ver- 

tical shear and therefore horizontal density gradients in frontal regions. From figure 1.2 

we see that the fastest oceanic growth rates are present in the western boundary currents 

of the North Pacific and Atlantic basins and in the Antarctic Circumpolar current. 

Figure 1.3 plots the rms sea-surface height (ssh) variability averaged over 4 years 

obtained from the TOPEX/POSEIDON satellite altimeter. Intense variability can be 

seen in regions of strong boundary currents.   Comparison with Figure 1.2 highlights a 
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Figure 1.3: T0PEX/P0SEID0N rms sea-surface height (ssh) variability averaged over 
4 years (courtesy C. King, MIT). The range contoured is 0 to 30cm in intervals of 5cm. 
There is marked variability in the western boundary currents of the Pacific and Atlantic 
basins and in the Southern Ocean. 

broad agreement between the locations of observed ocean variability and of computed 

eddy growth rate. This agreement suggests that mesoscale variability is closely related 

to the baroclinicity of the large-scale flow. 

Figures 1.2 and 1.3 demonstrate that eddies generated through baroclinic instability 

are ubiquitous in the global ocean and have characteristic time-scales of weeks to months, 

and space-scales of tens of kilometers. Although referred to as mesoscale eddies in the 

oceanographic literature, these turbulent eddies in near geostrophic balance are analogous 

to synoptic eddies in the atmosphere, whose time scales are hours to days and spatial 

scales are of thousands of kilometers. This analogy will prove to be advantageous as the 

thesis will show. 

It is clear that if one wishes to use a numerical model to calculate the dynamics 
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and water mass distribution of the large-scale ocean circulation, the eddy transporting 

properties of tracers and momentum must be incorporated into the calculation. 

1.2    Prior representation of eddy transfer 

A tremendous body of work has been dedicated to understanding and parameterizing 

transfer properties and mean flow forcing by eddy processes in both the atmosphere and 

ocean. I choose to give a brief overview here. 

1.2.1    Atmospheric eddies 

In the atmosphere, eddies counteract the latitudinal imbalance of radiative heating by 

transporting heat polewards. Jeffreys (1926) showed that large-scale eddies are respon- 

sible for midlatitude surface wind maintenance by considering the momentum budget of 

latitude bands. Special attention was attached to understanding the surface winds of the 

earth, since they are related through frictional divergence to locations of high and low 

precipitation. Moreover, the vertical structure of the divergence of the eddy momentum 

flux along with surface friction is responsible for the maintenance of the Hadley, Ferrel, 

and Polar cells observed in the Eulerian mean. For these reasons atmospheric dynami- 

cists, in stark contrast to their counterparts in oceanography, have concentrated on the 

eddy transport of momentum in particular. 

Atmospheric transport of momentum, heat and chemical constituents has been fre- 

quently represented as a downgradient diffusion process, with positive diffusion coeffi- 

cients. 'Mixing length' ideas were obtained by likening the geophysical eddy transfer 

process to eddy transfer in the kinetic theory of gases. The mixing length hypothesis 

assumes that a displaced fluid parcel will carry its properties for a characteristic length 

scale and then mix with the surrounding fluid. This is analogous to a gas molecule travel- 

ing a mean free path distance before exchanging momentum with another molecule upon 
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collision. Using mixing length theory, the eddy flux terms are represented as 

V'T' = —ACVT 

for a conserved quantity r. This is Ficks first law for diffusion, and leads to the terminol- 

ogy of Fickian diffusion for any process represented in this manner. In general the transfer 

coefficient, K, has differing values between the horizontal and vertical. Eventually, mixing 

length theory of momentum transfer had to be forsaken for large-scale atmospheric flows 

because the implied eddy transfer coefficient was negative (Starr (1968)). 

The mixing length approach was applied to potential vorticity by Green (1970) who 

argued that for the conserved quantity - potential vorticity - the eddy field acts to transfer 

potential vorticity down the large scale gradient. He further noted that mixing length ar- 

guments had been incorrectly applied to momentum. A parcel of fluid in the atmosphere 

does not conserve its momentum, due to the presence of pressure gradient forces. Thus, 

it is not appropriate to represent momentum transfer by baroclinic eddies as a diffusion 

process, since the parcel velocity has undergone changes during the displacement. 

Green (1970) represented the physics of the transfer process by prescribing the shape 

and magnitude of the transfer coefficients. The eddy transfer characteristics of momen- 

tum and heat are dependent upon the anisotropic nature of the eddies. The sense of the 

Reynolds stress terms depends upon the variation of the trough and ridge lines of the 

amplifying waves. A tilt of the trough lines with height gives a horizontal heat transport, 

and a bending of the trough lines in the horizontal produces momentum transport. The 

spatial anisotropy of the eddies was revealed by linear baroclinic instability theory, and 

this helped Green (1970) specify the spatial form of the eddy transfer coefficients. He 

then prescribed their magnitude from energetic arguments. In a similar manner to Green 

(1970), Stone (1972) drew on insights from linear baroclinic instability to parameterize 

the eddy heat fluxes in a radiative-dynamical model of atmospheric stratification. Stud- 

ies of parameterization in the atmosphere really end here. The eddy length scale in the 

atmosphere is on the order of 1000 km, about 1/10 the domain size. Thus it is relatively 
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easy, compared to the ocean case, to resolve the geostrophic eddy field in models of the 

atmosphere. Thus eddy parameterization on the synoptic scale in the atmosphere is 

necessary only for coupled ocean-atmosphere climate integrations of thousands of years. 

However, the understanding of atmospheric eddy motions and their impact on zonal 

mean flows has taken an enormous step forward in the last two decades. We have been 

presented with practical, powerful theorems which furnish us with diagnostic methods 

to deal with eddy forcing and propagation in zonal flows [Eliassen and Palm (1961), 

Andrews and Mclntyre (1976,1978a)]. Further, generalized Lagrangian mean (GLM) 

theory [Andrews and Mclntyre (1978a,b), Mclntyre (1980)] describes the interaction of 

the eddies with the zonal mean flow and provides a clearer description of the eddy forcing. 

This approach shows that the eddy flux term can act in an advective manner similar to 

a Stokes drift velocity which is due to the anisotropy of the amplifying wave field. In 

their paper, Eliassen and Palm (1961) laid down the foundations for this approach. They 

introduced a quantity that involves northward fluxes of heat and zonal momentum in the 

meridional plane, showing that the eddy forcing of the zonal mean circulation is given by 

the divergence of what was later named the Eliassen-Palm flux. These studies have led 

to useful theoretical tools which have been applied diagnostically to atmospheric data 

[see, for example, Edmon et al. (1980), Palmer (1981)] to provide clear insight into 

eddy transfer characteristics and their feedback on the atmospheric zonal mean flow. 

Moreover, in the transformed Eulerian mean formulation, which is based upon GLM 

theory, the nonacceleration theorem of Charney and Drazin (1961) is transparent, while 

such a result is not at all obvious in the conventional untransformed Eulerian mean 

approach. 

These useful ideas for zonal mean flows have been extended to time-mean flows 

[Hoskins (1983); Hoskins et al. (1983); Trenberth (1986); Plumb (1986); Andrews (1990)] 

to give insight into the eddy propagation statistics and forcing of non-zonal flows. Plumb 

(1990) further clarified the picture of forcing of the mean flow by the eddies by deriving 

a nonacceleration theorem for quasigeostrophic eddies on a time mean flow. 
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From these studies it is clear that the atmospheric dynamicists have a deeper under- 

standing of eddy transfer, propagation, and forcing of the atmospheric zonal and time 

mean flows, which incorporates both the heat and momentum eddy transport. 

1.2.2    Ocean eddies 

There have been many attempts and methods used to incorporate the transfer of prop- 

erties by eddies in non-eddy resolving ocean models. Here, they will be grouped into two 

categories; the approaches of Fickian diffusion and bolus velocity transport. 

Fickian diffusion 

The first approach is the common practice of incorporating the effect of eddies as Fickian 

diffusion, based on mixing length arguments, for both momentum and tracers. This is 

physically inadequate on two counts. First, mixing length arguments are unjustified in 

the case of momentum [Webster (1965), Starr (1968), Green (1970)], and second, eddy 

tracer transport can act as an advective process (Plumb and Mahlman (1987)). Prior 

to 1990 this was the method of incorporating the eddy effects into coarse resolution 

ocean models. Even the most sophisticated schemes concentrated on tracer diffusion. 

Cox (1987) mixed the tracer along isopycnal surfaces by rotating a diffusion tensor such 

that the large diffusive flux is along isopycnal surfaces (Redi (1982)). However, Cox 

(1987) was still obliged to run his model with a small background Fickian diffusivity 

in order to prevent numerical instability. This has profound implications for climate 

simulations, because they are integrated for thousands of years, a time scale over which 

any small amount of diffusivity will become important. Any diffusive parameterization 

will contribute to the overly diffusive nature of ocean models, leading to a problem of 

preserving tracer quantities and distributions in such simulations. 

A further important drawback to the diffusive representation is that we may be study- 

ing a different dynamical system in the models compared to that which exists in nature. 

The real climate system can undergo transitions, either abrupt or over long time scales, 
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to different states. Lorenz (1968) argued that so called "almost intransitive" non-linear 

models could, in like manner, exhibit natural oscillations and reach equilibria that are 

to some extent determined by the initial conditions. However, highly diffusive models 

tend to be "transitive", meaning that unique equilibrated states are reached that are in- 

dependent of the initial conditions. Hence excessively diffusive models are transitive and 

are arguably not the appropriate tool for studying the inherently variable ocean climate 

system. 

Exceptions to the rule of diffusive representation were the potential vorticity mixing 

theories of Welander (1973) and Marshall (1981), and the homogeneous turbulence study 

of Haidvogel and Held (1980). 

Marshall (1981) applied Green's (1970) ideas to a zonal mean ocean, such as in the 

Antarctic Circumpolar Current (ACC). They were further applied to a three-dimensional 

barotropic gyre flow by Marshall (1984). In these studies, potential vorticity was trans- 

ferred down its mean gradient; upgradient momentum transfer resulted in some regions, 

sharpening the eastward jet of the ACC for example. Although successful, Marshall's 

(1981) approach is not of immediate use in climate modeling. The study was under- 

taken in a two layer fluid governed by the quasigeostrophic potential vorticity equation. 

However, most numerical models do not have potential vorticity as a prognostic variable, 

so unless an additional inversion were undertaken - creating additional computational 

expense - a potential vorticity transfer approach in the conventional Eulerian framework 

is not possible. 

Bolus velocity transport 

In the second type of approach, Gent and McWilliams (1990) addressed the diffusive 

nature of ocean models by likening the effect of the eddies on the transport of tracers to 

that of a Stokes advection. This work was presented without reference to, or knowledge of, 

the tropospheric studies of Andrews and Mclntyre (1976,1978), and Plumb and Mahlman 

(1987), among many others.  Only recently have the authors reconciled their approach 
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with the atmospheric literature [see Gent and McWilliams (1996)]. 

For coarse-resolution ocean model flows, Gent and McWilliams introduce an "effec- 

tive advection velocity", consisting of the large scale velocity and an "eddy-induced" or 

"bolus" velocity that depends on the density flux of the eddies, which replaces the large 

scale velocity in the tracer equation. 

Note: throughout the thesis the nomenclature of "eddy-induced velocity" is avoided 

to prevent confusion over the role of the eddies in forcing the mean flow. It incorrectly 

implies that the meridional residual circulation can be separated into two terms; one 

of which is the Eulerian mean circulation and is independent of the eddy disturbances 

and one that is the sole result of them. However, the eddies can and do modify the 

mean circulation through their momentum and heat transport. Hence, there is actually 

an "eddy-induced" component in the Eulerian mean circulation. It is therefore wise to 

avoid this artificial and inaccurate separation. As a result, we prefer to think in terms 

of the "residual mean velocities" which are the sum of the Eulerian mean velocities and 

terms which depends on the divergence of the horizontal heat and momentum fluxes. 

The Gent and McWilliams (1990) (GM) technique consists of mixing along isopycnal 

surfaces of the thickness between adjacent isopycnals, while conserving the volume of fluid 

between such surfaces. This mixing of isopycnal thickness implies the dynamical effect 

of the depletion of available potential energy (and the vertical transfer of momentum), 

mimicking baroclinic instability. 

The scheme was first implemented in McWilliams and Gent (1994) in a balanced 

equations model. Gent et al. (1995) presented the scheme in such a manner that it 

could be implemented in a z-coordinate numerical model. Danabasoglu et al. (1994) and 

Danabasoglu and McWilliams (1995) introduced the GM scheme into the GFDL MOM 

model and found that it allowed for a drastically reduced value of lateral diffusivity, 

alleviating to a certain extent the highly diffusive nature of numerical ocean models. 

Subsequent work on ocean eddy parameterization since GM has concentrated on pre- 

scriptions for the "bolus" velocity.   These studies assume a release of mean potential 
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energy through baroclinic instability. Most techniques are guided by the concept of the 

depletion of available potential energy and eddy fluxes that are preferentially directed 

along isopycnal surfaces. Some authors introduce additional complications relating to 

neutral surfaces [Hirst and McDougall (1996), Mclntosh and McDougall (1996), Mc- 

Dougall and Mclntosh (1996a,b)] or stochastic theory [Dukowicz and Greatbach (1997)]. 

Tandon and Garrett (1996) focus on the "bolus" velocity by discussing the impact on it 

when eddy energy dissipation is local in nature due, for example, to a process such as the 

breaking of internal waves. Treguier et al (1997) considered how the constraints on the 

"bolus" velocity are impacted by the presence of horizontal boundaries. They also noted 

that potential vorticity and not isopycnal thickness was a more appropriately conserved 

quantity, a point also noted by Marshall et al. (1998) and Lee et al. (1997). Visbeck et 

al. (1997) examine the Gent and McWilliams scheme in the light of four eddy resolving 

calculations and find that the most appealing results are obtained when Green's (1970) 

transfer theory is used to specify the transfer coefficient for the isopycnal heat flux which 

in turn specifies the "bolus" velocity. 

Recently Killworth (1997, 1998) has offered an alternative parameterization scheme to 

GM, but like GM, his focus is on eddy tracer transport. His scheme is based on potential 

vorticity and isopycnal thickness fluxes in linear baroclinic instability. Killworth (1998b) 

tests the scheme in an eddy-resolving channel and not surprisingly finds his parameterized 

results are identical to results obtained by employing the GM scheme. Greatbach (1998) 

recently offered an interesting paper which, like this thesis, advocates a potential vorticity 

flux term in the momentum equation. However, his study differs from my thesis in three 

respects. Firstly, in the governing equations of Greatbach (1998), the velocities that 

appear are a mixture of those of the Eulerian mean and a "tracer transport velocity". 

This leads to difficulties for prognostically calculating the flow evolution. Second, he 

neglects the flux of relative vorticity (lateral momentum transfer) by the eddies and in 

so doing overlooks an important component of the physics of the eddy process. Thirdly, 

the scheme is not implemented in a numerical model. 
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Notable shortcomings of the previous oceanographic studies 

Based on the review presented above, I take the following to be true for the remainder 

of the thesis: 

1. The Fickian diffusion representation of eddy tracer has led to non-eddy-resolving 

numerical ocean models being overly diffusive. Further, a diffusive picture of heat and 

tracer transfer may be inappropriate because eddy transport may be advective in nature. 

2. The Fickian diffusion representation of eddy momentum transfer is clearly in error. 

3. Recent studies, although producing success in mimicking the main features of water 

mass distributions, have neglected the physics of the momentum transfer entirely. They 

have chosen to concentrate on the eddy transfer of tracers. These studies therefore lack 

the ability to incorporate the total eddy effects on water mass distributions and the ocean 

mean flow. 

There are two logical conclusions one can reach upon reading the above points. First, 

improvements to eddy representation in non-eddy resolving ocean models can readily 

be made. Alternatively, one could argue that to attempt to try would be a hopeless 

endeavor. I side with the first inference, and the resultant work follows. 

1.3    Focus and overview of the thesis 

The focus of this thesis is to tackle the difficult problem of the representation of quasi- 

geostrophic eddies in non-eddy resolving, hydrostatic, primitive equation (HPE) models. 

The goal is straightforward; to obtain a more complete framework to incorporate the 

eddy tracer and momentum transfer. There are those who may argue that even though 

the intense variability shown in figure 1.3 is present, it may have little or no dynamical 

consequence in the ocean. Although this may be the case, I feel that there is a certain 

virtue in deriving a parameterization approach that is more physically based than those 
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in current use, and then exploring the scheme in light of the eddy physics. The method 

presented has at its core the physics of the transfer of potential vorticity. 

In quasigeostrophic models a framework is strongly suggested by the potential vor- 

ticity theorem. The heat and momentum aspects of the eddy transfer process can then 

be naturally combined by phrasing them in terms of potential vorticity transport - see, 

for example, Marshall (1981). Eddy closure, although still thwart with difficulties, is at 

its most transparent. However the ocean is not quasigeostrophic; it is inappropriate, for 

example, to linearize the thermodynamic equation about a constant reference stability 

profile which must be held constant in the horizontal. How, then, can progress be made 

in more complete models? 

A potential vorticity theorem exists for the HPE equations, the starting point of 

most ocean climate models. However, to invert for the flow field requires specification of 

a balance condition (i.e. geostrophic balance) and a reference state. This would lead to 

major complications in the treatment of the lateral boundaries, the loss of gravity-wave 

dynamics, and increased computational expense! Further, unlike quasigeostrophic mod- 

els, ocean climate models do not have potential vorticity as the the prognostic variable. 

In the HPE models, momentum and temperature are stepped forward separately and the 

effect of the eddies (eddy momentum and heat flux divergences) appear as forcing terms 

on the right-hand-side of the equations and are subsequently parameterized separately. 

It is argued here that this separation of the heat and vorticity transporting properties of 

eddies - a separation that is dictated largely by algorithmic, rather than physical consid- 

erations - significantly complicates the parameterization problem and, if possible, should 

be avoided. 

The thesis presents an alternative way forward in which the full HPE's are trans- 

formed, guided by the formalism of the "transformed Eulerian mean" of Andrews and 

Mclntyre (1976). In the mean equations, and only if the eddies are assumed to be quasi- 

geostrophic, their effect appears as a body force term - an eddy potential vorticity flux - 

driving the momentum equations. Parameterization can then focus on the closure of this 
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flux. This task is easier, due to the quasi-conserved nature of potential vorticity, than 

parameterizing the transfer of heat and momentum separately. 

Chapter 2 presents the dynamical framework of the approach. It details how eddy 

effects can be written symbolically by a flux of potential vorticity. Chapter 3 presents 

the closure assumption to be used for this eddy term. In chapter 4 the approach is 

implemented in a numerical model. Mean fields and transfer characteristics from a pa- 

rameterized model are compared to those from an eddy resolving model for zonal mean 

flows. The advantage of this approach is further illustrated with application of the pa- 

rameterized model to an atmospheric problem. In chapter 5, we extend our scope to 

consider flows where a spatial mean may not be appropriate. The time mean theory 

presented in chapter 2 is investigated in the light of an eddy resolving ocean calculation 

in a geometry where there is no obvious spatial symmetry. In chapter 6, we review the 

major results of the thesis and discuss possible future directions of the work. Appendix 

A presents the details of the numerical model used. 
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Chapter 2 

The Dynamical Framework 

2.1    Introduction 

This chapter presents and details the theoretical framework used throughout the thesis. 

This framework differs from that which is ingrained in the dynamical oceanography com- 

munity, which stresses the conventional Eulerian mean. I will make use of an alternative, 

and conceptually more appealing, coordinate system, that is, unfortunately, not familiar 

to most oceanographers. 

Section 2.2.1 briefly reviews the differing formulations employed in dynamical studies 

of atmospheric zonal flows. These theories have been extended to cover time mean flows, 

but to avoid confusion for someone not reasonably familiar with the subject, the review 

covers only zonal mean theories. This will not lead to any loss of understanding. Section 

2.2.2 provides a necessary revision of quasigeostrophic potential vorticity and eddy fluxes 

of potential vorticity in order to effectively present material later in the chapter. Section 

2.3 presents the well known Eulerian mean formalism and illustrates clearly why this is 

not the most effective way in which to look at eddy transfer. In sections 2.4 and 2.5, I 

introduce the formalism that will be used throughout the thesis. It will be used both 

diagnostically and prognostically to determine eddy propagation, transfer, and forcing 

of the mean flow in the later chapters. Section 2.6 discusses the potential vorticity flux 
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representation, commenting on the form it takes and on issues involving momentum 

constraints. Section 2.7 states the governing equations for time mean flows. Finally, in 

section 2.8 the governing equations for zonal mean flows are presented. 

2.2    Background 

2.2.1    Zonal mean coordinate systems 

For the benefit of any readers who have not encountered the atmospheric eddy studies 

outlined in the preceding chapter, I choose to briefly review different mean formalisms 

commonly used in the atmospheric literature for studying zonally symmetric flows. 

Eulerian zonal mean 

The most conventional and straightforward approach is to simply zonally average the 

governing equations of motion. Eddies are defined as the deviation of a quantity from its 

zonal average. Reynolds averaging leads to the eddies appearing explicitly as eddy flux 

(correlation) terms in the equations for the mean quantities. The eddy momentum and 

tracer terms appear in separate equations. 

Transformed Eulerian mean 

To investigate eddy forcing of the mean flow, it has proved advantageous to transform the 

equations of motions to a more convenient form. This was originally done by Andrews and 

Mclntyre (1976) to yield altered equations known as the "transformed Eulerian mean" 

(TEM). In the TEM theory, the mean velocities in the meridional plane are redefined 

using the eddy temperature flux term to give what is known as the "residual mean 

circulation". 

The advantages of the TEM formalism are twofold. First, the eddy correlations appear 

only as one term - the divergence of the "Eliassen-Palm flux" in the zonal momentum 
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equation. This is much clearer than the Eulerian mean approach, in which multiple 

correlation terms appear. The occurrence of only one eddy term emphasizes the fact that 

eddy fluxes of heat and momentum act in combination and not separately. Second, the 

tracer advection is by the "residual mean circulation", which under certain assumptions 

is equal to the "effective transport velocity" defined by Plumb and Mahlman (1987). This 

is the relevant velocity for understanding atmospheric tracer transport in the meridional 

plane. 

Generalized Lagrangian mean 

The TEM formulation is derived assuming that the eddies are of small amplitude, a 

restriction often broken when they grow to finite amplitude. To avoid these difficulties, 

Andrews and Mclntyre (1978a,b) developed a mean coordinate system concerned with 

the interaction of the eddy disturbances and the mean flow which is exact. This revealing 

conceptual definition of the mean is known as the "generalized Lagrangian mean" (GLM). 

The procedure is to average following fluid parcels, rather than over a fixed spatial region. 

Although the theory is appealing from a conceptual point of view, serious practical 

difficulties are encountered when attempting direct application to atmospheric flows. As 

a result the theory has seen little practical use since its development. 

2.2.2    Quasigeostrophic PV, PV sheets, and eddy PV fluxes 

Quasigeostrophic PV 

Potential vorticity (PV) is an indispensable tool for understanding most aspects of large- 

scale oceanographic and atmospheric flows [this is stressed in textbooks e.g., Pedlosky 

(1987), and review articles e.g., Hoskins et al. (1985), and Rhines (1986)]. Quasi- 

geostrophic motions are geostrophically balanced flows on a beta plane in a stratified 

fluid. The quasigeostrophic PV equation 

§H <"> 
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governs the evolution of the quasigeostrophic PV, q 

,      _       dv     du a (    T    \ 
q = f0 + ßy+^-- + f0-[WJFz), (2.2) 

where u and v are the geostrophic velocities, T is the temperature, and D/Dt = d/dt + 

ud/dx + vd/dy is the substantial derivative following the geostrophic flow. Using the 

geostrophic and hydrostatic balance relations we can write u, v, and T in terms of the 

geostrophic streamfunction, defined by 

^=—r(p-p0), (2.3) 
Po/o 

where p0(z) is a suitably defined horizontal mean reference pressure profile, pQ(z) — pxy, 

and ()    denotes an average over x and y. This allows us to write the geostrophic velocities 

w = 0, (2.4) 

as 
dip dip 
dy     ' dx 

and hydrostatic balance thus: 

T = A^. (2.5) 
go> oz v     ' 

The quasigeostrophic PV can be written in terms of the geostrophic streamfunction, 

viz.: 
,   ,   .       d2ip     d2ij)     r2 d ( 1 dip\ 

with N2 = N2(z) = gaTzEy being the square of the horizontal mean buoyancy frequency. 

Equation 2.1 is termed the quasigeostrophic PV equation because the evolution of q 

is determined by the ageostrophic effects of time dependence, advection, changes in 

planetary vorticity, and vortex stretching. 

Fluid parcels conserving their PV (equation 2.1) in the presence of an ambient plan- 

etary vorticity gradient (/?), experience a restoring force which leads to Rossby wave 

propagation. If one of these waves propagates in close proximity to another, they can mu- 

tually interact, draw energy from the mean flow, and make possible the linear barotropic 

and/or baroclinic shear instabilities responsible, as discussed in chapter 1, for much of 

the eddy motions in the atmosphere and ocean. 
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For atmospheric zonal flows, Charney and Stern (1962) showed that that for vertically 

bounded flow to be unstable the meridional potential vorticity gradient must change sign 

somewhere in the flow. For flow without an upper boundary the necessary criterion for 

instability is that the meridional gradient of potential vorticity in the flow is somewhere 

opposite to the meridional gradient of the potential temperature at the lower boundary. 

In the earth's atmosphere the PV gradient is always positive in the troposphere, while the 

poleward temperature gradient is always negative. Thus, the Charney and Stern (1962) 

necessary condition for baroclinic instability is always met for large-scale atmospheric 

flows. However, the eddies do not grow unrestrained, via continuous extraction of energy 

from the mean flow. The eddy growth is checked by eddy dissipation. Either nonlinear 

processes dissipate eddy energy at the same rate that energy is extracted from the mean 

flow, or the eddies alter the mean flow to modify their growth rates until dissipation is 

matched. 

PV Sheets 

With knowledge of the PV, the streamfunction ift can be determined by inverting the 

elliptic problem given by equation 2.6. The boundary conditions can be inferred from 

kinematic conditions at the boundaries. At the upper and lower boundaries there exists 

an established temperature distribution. Equation 2.5 provides inhomogeneous Neu- 

mann boundary conditions on ip at the horizontal boundaries since dip/dz is specified 

there. A computational and conceptual simplification can be made if we replace the in- 

homogeneous Neumann boundary conditions by homogeneous ones. Drawing on insights 

from potential theory, Bretherton (1966), working within the confines of quasigeostrophic 

theory, recognized that boundary temperature distributions are mathematically equiv- 

alent to concentrated sheets of quasigeostrophic PV just interior to the boundaries, if 

those boundaries are then assumed to be isothermal. This enables us to incorporate the 

boundary temperature distributions as parts of the interior PV distribution. 

We define the quasigeostrophic PV q, which is equal to q in the fluid interior, except 
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Figure 2.1: Schematic picture of lateral boundary PV sheets. Bretherton (1966) in- 
troduced the mathematical equivalence of boundary temperature anomalies to a PV 
anomaly. It is a powerful technique as it enables us to think of a boundary temperature 
distribution as part of the PV distribution. 

adjacent to the horizontal boundaries. Just inside these boundaries, we place delta- 

function sheets of PV, 6qupper and Sqlower, with the size and shape of each representing 

the magnitude and structure of the temperature distribution on the boundary. Thus: 

Q       Q   i   OQupper ~r OQloweri (2.7) 

where the delta-function sheets are given by 

So        =£S| "Hupper        jy2  o    I upper > 6qt lower N2 dz \lower (2.8) 
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The temperature perturbations at the upper and lower boundaries are set to zero, with 

the actual temperature variation appearing in the PV distribution as delta-function sheets 

of PV just interior to the boundary - see figure 2.1. 

Eddy PV fluxes 

We now define a mean streamfunction denoted by an overbar and a fluctuating or eddy 

part which is the deviation from this average and is denoted by a prime: 

V> = ^ + ^'. (2.9) 

It follows that the mean quasigeostrophic potential vorticity is 

d2^     d2l>      ,,9/1 d$\ 

and the perturbation quasigeostrophic potential vorticity is given by 

The geostrophic eddy velocities are given by - 

"=-i •  '-■£■ (2-12) 

with the perturbation temperature given by 

r = A^:. (2.i3) 
got dz 

Using equations 2.11 and 2.12 we obtain the un-averaged eddy PV fluxes: 

UQ dy dx2       dy dy2      h dy dz\N2 dz ) [       ' 

dib'd2ib'     dip'd2ip'      2dip' d ( 1 dipr 

dx dx2       dx dy2       ° dx dz \N2 dz 
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We can evaluate the mean zonal PV flux using the same averaging operator as before. 

Evaluating the first term in equation 2.14 gives: 

dip' d2ip' 
dy dx2 

d_ 
dx 

dip' dip' 
dy dx 

+ dip' d2ip' 
dx dydx 

dip' dip' d_ 

dx 

d     / N 

Yx (ttV)+ 

dy dx 

ld_ 
2dy 

ld_ 
+ 2dy dx 

p), 
while the second term yields: 

dip' d2ip' 

dy dy2 

_ld_  (dipr 

~2dy\\~dy~t 

9. fhi \     ) ' 2dy 

and the final term in equation 2.14 becomes 

(2.16) 

(2.17) 

-/< 
2<Wd_ f 1 dip' 
0 dy ~d~z 1 N2 ~dz ~      hdz 

1 dip'dip' 
N2 dy dz 

+ U diP' d2iP' 
N2 dz dydz 

d 
10 dz 

1 dip'dip' 
N2 dy dz /c2 

f2 d  (WF\  i ga d   [T 

~   Udz[Tz)
+  2dy\% 

+ JULIUS 
N2dy\2\dz ) 

(2.18) 

Hence the mean zonal eddy PV flux is given by 

d_ 
dx 

\d_t—\ 
2dy - = -(^K£P)4|^)+4(f) + d  IT'2 ga 

2 dy\Tk 
ifr    ■      (2-19) 

The eddy energy density per unit mass is given by 

1  /        p2 
c = - \u'2 + v'2 + ga= (2.20) 

and so we can rewrite the mean zonal eddy PV flux as 

u'q' 
d_ 
dx (^)+i(^+4(f; (2.21) 
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Similarly the mean meridional eddy flux of perturbation PV is: 

^|p-)-|(-w°l(¥)-       ^ 
Equations 2.21 and 2.22 make clear that the eddy flux of PV - a quantity that is con- 

served or quasi-conserved during parcel displacement - naturally encapsulates both the 

momentum and heat transferring properties of quasigeostrophic eddies. 

2.3    The Eulerian mean 

The Eulerian momentum and temperature equations for hydrostatic, Boussinesq flow, 

subject to forces F and sources/sinks of heat G, are: 

^ + /kxu+-Vp   =   F, (2.23) 

DT 
-Di   =   °' (224) 

where u = (u, v,w) is the Eulerian velocity, / = f(y) is the Coriolis parameter, p0 is a 

reference value of density, and D/Dt = dt '+' u • V is the total derivative following the 

Eulerian flow. If it is sensible to define a mean (at present we do not specify whether 

the averaging procedure is a temporal, spatial, or an ensemble average) then the flow 

separates into two components: a mean denoted by an overbar (); and a fluctuating or 

eddy part which is the deviation from this average: 

s' = s-s. (2.25) 

It is assumed that if the mean is a time average, then the eddy statistics are stationary 

(not changing over time) and if the mean is spatial, then the statistics are homogeneous 

in one direction or in a limited region. Thus, the sum of the positive deviations from the 

mean must equal the sum of the negative deviations and so 

7 = 0. (2.26) 
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Upon application of the averaging the mean momentum and temperature budgets 

can be written as: 

DvL 1 _     1           
—- + /k x ü + —Vp   =   F - - V(u' • u') - u' x V x u', (2.27) 

DT 
Dt 

G - V • (u'T'), (2.28) 

where D/Dt = dt + u • V is now the total derivative following the Eulerian mean flow. 

If we consider the zonal and meridional components of equation 2.27: 

Du      ,        1 
■^r-fv + —dxp   =   F  -V-(«y) (2.29) 
JJt po 

-j£+fü+-dyP = Fy-V-j^) (2.30) 

along with equation 2.28 we see that the effect of eddies appears as the divergence of 

the Reynolds stresses in the momentum equations and the divergence of the eddy heat 

flux in the temperature equation. This separation of the momentum (vorticity) and heat 

transporting properties of the eddy field has led to them being treated separately in 

models. For example, as discussed in chapter 1, Reynolds stresses are almost universally 

represented as a Fickian process; V • (uV) = -KW2u - in large-scale ocean models, even 

though it is known that quasigeostrophic eddies can, and often do, 'unmix' momentum 

(Starr, 1948). 

Only if these fluxes are represented accurately can the mean flow and tracer distri- 

butions be expected to evolve appropriately. Consider a simple thought experiment of 

zonal flow in thermal wind balance. The eddy terms in equations 2.28 and 2.29 manifest 

themselves as two terms. However, the eddy temperature fluxes can impact the mean 

velocities just as the eddy momentum fluxes can, because the flow is in thermal wind 

balance. For example, if the eddy disturbance is a vertically propagating Rossby wave, 

its flux characteristics are v'T' ^ 0 and vN? - 0. First inspection would lead one to 

believe that the mean zonal momentum is unchanged, because uW = 0. However, the 

mean state does modify its velocity structure.   This is because thermal wind balance 
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necessitates a concurrent change in ü. This can only be achieved through a meridional 

circulation which impacts both heat and momentum budgets. Thus the eddies not only 

force Du/Dt and DT/Dt, but also they impact the meridional circulation. This simple 

thought experiment highlights the fact that one should not consider the eddy momentum 

flux u'v' and temperature flux v'T' separately. They act in unison, changing the mean 

flow. 

It further highlights a problem associated with the procedure followed in recent 

oceanographic studies, of the separation of the velocity field into a component (often 

named the "bolus" velocity) which is the result of the eddies and a component that is 

independent of them. We see that there is no mean velocity that is autonomous of the 

eddy disturbances. 

A logical way forward is to transform the above equations so that the effect of the 

eddies on the large-scale appears as an eddy flux of a conserved, and hence more trans- 

ferable quantity, such as potential vorticity. This can be done by adopting the formalism 

of the 'transformed Eulerian mean'. 

2.4    The transformed Eulerian mean (TEM) 

The Eulerian mean equations are transformed by introducing a three-dimensional "resid- 

ual" mean velocity, denoted by ü*, which we will insist is nondivergent and is defined 

thus: 

ü* = u + VxR, (2.31) 

where 

"(f) 
(^f) , (2.32) 

can be considered to be the "residual transformation vector" and is chosen such that the 

appropriate terms appear when the PV equation is formed, e is the eddy energy density 

R = 

/  R*\ ( 

Ry 

\RZ I 

\ 
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per unit mass, defined by equation 2.20. 

The form of the transformed velocity follows from Hoskins (1983) [equations (7.41)] 

and Plumb (1986) [equations (4.4) and (4.5)] who studied transient eddies in time- 

averaged three-dimensional quasigeostrophic flows. The governing equations in those 

studies were used as diagnostic tools to understand eddy forcing of atmospheric clima- 

tologies. As a result the "prognostic" variables in those studies were those of the Eulerian 

mean flow with the transformed velocities only appearing explicitly in the Coriolis term. 

The approach here differs because a governing set of equations is sought which is prog- 

nostic in the residual mean circulation. 

To proceed we use equation 2.31 to substitute for n in terms of u* in equation 2.27, 

which yields: 

-D*u*      .,      _      1 _       - 1 
^   + /k x ü* + — Vp = F   -   - V(u' • u') - u' x V x u' 
Dt p0 2 

+   /kx(VxR) 

+   (VxR)-V[ü*-(VxR)], (2.33) 

where D*/Dt = dt + ü* • V is the total derivative following the residual mean flow. 

Furthermore, 2.28 takes the transformed form: 

— = G-V^(irTJ+(VxR).VT. (2.34) 

The left-hand-side of equations 2.33 and 2.34 have the exact form of the mean HPE's but 

now some of the variables must be reinterpreted (note the *). At this point it might seem 

that equations 2.33 and 2.34 are a step backward from equations 2.27 and 2.28, in that 

the right-hand-sides of equation 2.33 and 2.34 are much more complicated. But, as I now 

outline, if the eddy-terms are assumed to obey quasigeostrophic dynamics and scaling, 

then certain terms on the right-hand-side of equations 2.33 and 2.34 can be justifiably 

neglected. In effect we are filtering out the eddy terms that we deem are dynamically 

insignificant. This leads to an elegant simplification, both conceptually and algebraically, 

to provide insight into the transfer characteristics of the eddy motions. 
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2.5    The TEM in the limit of quasigeostrophic eddies 

2.5.1    Scaling analysis 

The simplest physical model possessing the essential properties of the eddy transfer is 

that these fluctuations are near a state of geostrophic and hydrostatic balance. That 

is, the eddies are quasigeostrophic in nature. With this assumption, certain eddy terms 

on the right-hand-side of equations 2.33 and 2.34 can be systematically neglected. This 

yields a set of equations which are simpler to interpret and explore than either equations 

2.27 or 2.33. The scaling assumptions and analysis are now set out in detail. 

The momentum equations 

We proceed by focusing on the zonal component of equation 2.33; 

dtü* + ü* • Vü* - /ü* + — dxp = Fx   -   V-(ÜV) 
Po v      ' 

+   [/kx(VxR)L 
D* 

L«(VXR) + 

+   [(V x R) • V [Ü* - (V x R)]]x ,   (2.35) 

and then we will extend the results to the meridional and vertical components. 

The properties of the flow have associated scales which are chosen as follows: 
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Symbol    Property Scale 

(ü*, v*)    mean horizontal velocities U 

tu* mean vertical velocity W 

p mean pressure P 

mean horizontal length scale L 

mean vertical length scale H 

T mean temperature T 

N2 mean stratification N2 

/ Coriolis parameter f 

(u1, v')     perturbation horizontal velocities    U' 

w' perturbation vertical velocity 

perturbation length scale Ld 

T" perturbation temperature T" 

If the large scale flow is in approximate geostrophic balance then we obtain a scale for P 

in terms of U, L and /. Since 

-fv* = —dxp 
Po 

then 

pL 

thus 

P - pfUL, (2.36) 

where the symbol "~" denotes order of magnitude equality. Quasigeostrophic eddies 

are close to being in thermal wind balance. This fact allows us to obtain a relationship 

between the velocity and temperature properties of the eddies. Thermal wind relates the 

vertical velocity shear to the lateral temperature gradients; 

fdzv' = gadyT', 
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thus 

and so 

T'~^i. (2.37) 

We now systematically determine the order of magnitude of the components of the 

vector R, whose curl is the difference between the Eulerian and residual mean velocities. 

The zonal component of R is   

*■ = . ^ 
T x z 

which scales as 

U'T'H 
R    ~   —™— T 

fU,2Ld 

gaT 

fU'2Ld 

N2H 
U'2H /Ldf

N 

fLd   VNHy 

Now the deformation radius L& scales as: 

NH 
f 

therefore 

fL 

Similarly, since 
/ u'T' 

Ry= lu 

T., z 

then Ry scales as 

(2.38) 

TT/2TT 

Rx ~ ^A (2.39) 

TT/2TT 

Ry ~ ^-. (2.40) 

The vertical component of R is related to the eddy energy density, viz: 

R* = I (y2 + ^2 _ e) 
/ 
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Because the eddies manifest themselves on the scale of the deformation radius, the eddy 

kinetic and potential energies are of comparable magnitude. Thus Rz scales as 

U'2 

Rz 

We now write 

( nx ^       ^ dyR
x - dzR

y ^ 

VxR 

Cx 

Cy 

\c* i 
Hence 

k x (V x R) 

dzR
x - dxR

z 

dxR
y - dvR

x 

Cx 

V    °    / 

R* R/\ 

'U'2  U'2\ 

Similarly for Cy: 

fL 'fLd 

/U'2  U'2, 

fLd' fL 

(2.41) 

(2.42) 

(2.43) 

With this notation equation 2.35 can be rewritten as: 

dtu* + Ü* • Vü* - fv* + — dxp = Fx - V • (W) + fCy + v?dxC
x + Cxdxu.     (2.44) 

Po v      ' 

Scaling for Cx: 

Cx   - 

(2.45) 

(2.46) 

Consistent with our quasigeostrophic scaling, u' < ü and Ld < L so w~ ~ 0(^P\. 

We are now in a position to scale each term in equation 2.44. 
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dtü*   ü* • Vw*    -fv"    j-odxp       Fx    -V • (uV)    fCy   ü*dxC
x   Cxd3 

**b «^- ^** *X- ^* *^* *X* *^ "J^ 

u 

u 
T 

U2 

L fU F u2 

L fcy UCX 

L 
UCX 

L 

1 
fr 

U 1 1 F 
fü 

U 
fL u 

Cx 

fL 
Cx 

fL 

1 
fr 

U 
fL 1 1 F 

fü 
U 
fL 

u 
fL (*)' (0 

The non-dimensional number R0 = ji is the Rossby number. For all flows studied in 

this thesis R0 -C 1. Neglecting terms that are smaller than 0{R0) allows us to neglect 

the last two terms on the right-hand-side of equation 2.44. Thus the eddy temperature 

flux enters the mean momentum budget through a Coriolis torque. Through neglect of 

the 0(R2
0) terms and evaluation of the fCy term we have: 

^ - fv* + j%v = r + dx p - e) - dy (SV) + fdz (^f-) . (2.47) 

Now, as defined in equation 2.21 

^=!P-)-!(^)+4( 
d    v'T° 

T   / 

thus the last three terms in equation 2.47 can be replaced by the eddy PV flux to yield 

^- ~fv* + -dxp = T + vÜ?. (2-48) 
Dt p0 

Following the same scaling procedure and using equation 2.22, the meridional momentum 

equation reduces to: 
D*V* „     _ 1    „   _ -y 

+ fuk + -dyp = Fy-u>q>. (2.49) 
Lit po 

Hence in the limit of quasigeostrophic eddies equation 2.33 simplifies to 

£>*u*      ..        ^      1 
+/k x Ü* + — Vp = F-kx (uY). (2.50) 

Dt po 
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The temperature equation 

Using the same notation, equation 2.34 can be written as 

D*T 

~Dt 
= G - V • (uT') + CxdxT + CydyT + CzdzT. (2.51) 

Now, 

CzdzT   =   (dxR
y - dyR

x) dzT 

- Hf Mf)K 
=   dx(u>T')+dy(v*T>) 

=   Vh ■ (uT), (2.52) 

with the quasigeostrophic assumption that Tz = Tz(z) and Vh = dx + dy.  Thus with 

equation 2.52, equation 2.51 becomes 

-öf = G- dzWT) + CxdxT + CdyT. (2.53) 

We now systematically scale each term in equation 2.53: 

dtT ü*-VT G -dz(w'T>) CxdxT      CydyT 

I I I           I 11 

T UT n                 n CXT OT 
7 IT ^             U — -TT 

T UT r n /U\UT      /U\UT 

The last two terms are 0(i?o) smaller than the substantial derivative terms and so to be 

consistent with the procedure employed for the momentum equations, we neglect them. 

The (w'T') vanishes for quasigeostrophic eddies. 
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Thus the transformed temperature equation can be written as 

D*T 

Dt 
G, (2.54) 

and our governing equations have become beautifully simple: 

—— + /k x ü* + — Vp 
Dt po 

D*T 

Dt 

F - k x (uY), 

G. 

(2.55.a) 

(2.55.b) 

Equation set 2.55.a-b are primitive equations for the mean flow in which the eddies 

obey quasigeostrophic dynamics. Using primitive equations for the mean flow and quasi- 

geostrophic dynamics for the eddy motions will not be appropriate for all circumstances. 

However for large-scale ocean climate models, the Rossby numbers of the eddy motions 

and large-scale flow are appropriately small such that the quasigeostrophic framework is 

appropriate for the eddies. 

2.6    Representation of eddies by a PV flux 

The governing equations have been transformed and an assumption has been made re- 

garding the dynamics of the eddies, which leads to one term that represents the effect of 

the eddies on the mean flow. As equations 2.55.a-b show, this term acts as an effective 

body force in the momentum equations; Feddies = —k x (uY). 

These equations differ from the TEM approaches offered previously in the atmospheric 

literature [Andrews and Mclntyre (1976), Edmon et al. (1980)] and recently in the ocean 

context [Lee and Leach (1996) and Greatbach (1998)]. This is due the fact that equations 

2.55.a-b are prognostic in the transformed (starred) velocities and nowhere does the mean 

velocity, H, appear. This is a tremendous advantage over governing equations in which a 

mixture of the Eulerian mean and residual mean velocities appear, because the residual 
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mean velocities do not have to be diagnosed. In this approach, the transformed velocities 

are determined implicitly. 

With the model velocities being those of the residual mean circulation, u*, the issue 

arises of how to make comparisons to oceanic observations of u. However, the reason 

for wanting to compare the velocity fields is unclear to me. For climate questions, what 

should be compared are the distributions of tracer and water properties. Information 

obtained through direct observations give instantaneous water mass and velocity distri- 

butions, which when averaged over a period of time are reported to give the Eulerian 

mean fields. However, as discussed in chapter 1, the mean flow is forced and modified 

by eddy motions (momentum transport) and heat and tracers are transferred by the 

eddies, modifying water mass distributions. When thinking about the mean climatic 

distributions of tracer and water masses and their transport, it is not the Eulerian mean 

velocities that are appropriate, but instead it those of the residual mean. So to make 

a direct comparison to observations, the residual mean velocities (n*'s) would have to 

diagnosed for the observed fields. The eddy fluxes (and their derivatives) in the real 

ocean are needed to do this, and this is a difficult task indeed. What should not be done 

is a comparison of Eulerian mean fields with those of the transformed Eulerian mean 

since they can look very different, particularly in the meridional plane. For example, 

in studies of the troposphere the multiple cells observed in the Eulerian mean (Hadley, 

Ferrel) vanish in the TEM, resulting in a single thermally direct overturning cell. 

If eddy-resolving and parameterized models are being compared, the task is easier 

because the ü*'s can be diagnosed using the resolved eddy fluxes. It can be justified that 

this comparison should be done as it is a direct test of the theoretical framework argued 

in this chapter. However, with regard to the real ocean and atmosphere, the Eulerian 

mean velocity (ü) is only part of the story of the transfer of fluid and its tracer properties 

and so is not needed by itself. 

Plumb (1986) shows that each component of the PV flux can be written as the 

divergence of another flux, viz. 
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u'q' = diBij, 

where d{ = (di,d2,d3) = (dx,dy,dz), and 

(2.56) 

B = 

/ 

V 

.9        i- /™'T'\    \ 

,'2 

Z(f) 

0 0 0 

(2.57) 

/ 

This is the equivalent for time-mean flows to the practice of writing the forcing in a zonal- 

mean flow as the divergence of the Eliassen-Palm flux as outlined in section 2.2.1. As will 

become apparent later in the thesis, there is considerable advantage in working with the 

Eliassen-Palm flux in zonal-flows. This flux is particularly illuminating when considering 

momentum constraints for the zonal-mean flow (introduced later in section 2.8.1). This 

is because the volume integral of the Eliassen-Palm flux divergence vanishes in the zonal 

case. This gives a constraint for any parameterization used to close for the PV flux. For 

time-mean flows the advantage is less transparent because the volume integral of each 

component of the PV flux does not necessarily vanish for free slip boundary conditions 

on the velocity field. For no-slip boundary conditions, the volume integral of the PV 

flux does vanish for the time mean flow. For free-slip conditions, consider the zonal 

component of the PV flux in a domain bounded in x between x = X\ and x = x2, in y 

between y = yi and y = y2, and vertically between the planes z = z\ and z — z2. Since 

""IM+ !(«-«,2)+/«|( d fu'T'y 

T7 

it follows that 

/ 
JVol 

u'q' dV 

+ 

/     /     \u'v' 

rx2   rz2 ,- 

L L f~ 
r r f A 
Jxi    Jyi 

dy dz 

u a 2/2 

2/1 
dx dz 

'u'T' Z2 

dx dy. 
JZl 
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The first term on the right-hand-side is zero because v! = 0 at x = xi and x — x2. The 

third term is also zero because V = 0 at z = zx and z = z2 due to the use of the PV 

sheets. However, the second term does not vanish and yields 

2/1 

Similarly, 

j-         fX2     fZ2   [1     ,   _ . T2/2 

dz. (2.58) 

U'^^CCU*2-^'2^ 
X2 

dy dz. 
XI 

(2.59) 
fy2 rZ2 n t—      ^ö,^N 

'yi  Jz\ 

Thus for general mean flows with free-slip boundary condition on velocity, the global 

integral of the PV flux does not vanish because of boundary flux contributions. These 

boundary contributions arise because they act to balance the volume integral of the 

Coriolis term /k x H*, which does not vanish under free-slip boundary conditions. 

2.7    The equations for time mean flows 

We now interpret the averaging procedure for time mean flows.  The equations can be 

readily obtained from equations 2.55.a-.b, and are restated: 

Dt 
-fv* + -dxp   = 

Po 
=   Fx + v'q', 

D*v* 
Dt 

+ /w* H dyp   = 
A) 

=   Fy-u'q', 

p0gaT + dzp   = = o, 
D*T 

Dt 
=   G, 

V-ü*   = =   0. 

(2.60.a) 

(2.60.b) 

(2.60-c) 

(2.60.d) 

(2.60.e) 

where D*/Dt = TI* • V. 

There are five equations (2.60.a-e) and seven unknowns; % v*, w*, T, p, v/q1, and 

v'q'. If the eddy PV fluxes can be expressed in terms of variables on the left-hand-side 
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of equations 2.60.a-e, then a closed set of equations for the time mean flow are obtained 

in which the eddies appear as a body force in the momentum equations. 

2.8    The equations for zonal mean flows 

We now consider flows which are primarily in the zonal direction, such as the jet stream 

in the atmosphere or the Antarctic Circumpolar Current in the ocean. From equations 

2.31 and 2.32 the transformed velocities appear thus: 

S*   =   ü + (dyR
z - dzR

y), 

Ü*   =   v + dzR
x, 

w*   =   w — dyR
x, 

(2.61.a) 

(2.61.b) 

(2.61.c) 

since for zonal mean flows dx = 0. If we scale 2.61.a: 

S*    «      Cx 

4*      4*        4- 

u   u   u£ 

The term which redefines the zonal velocity is 0(R0) smaller than the zonal mean zonal 

velocity and, if worked through, is on the same order as the terms neglected, through the 

assumption of quasigeostrophic eddies, in section 2.5. For this reason, when working in 

the zonal mean, the zonal mean zonal velocity is not transformed. Only the velocities in 

the meridional plane are altered. Hence it is consistent with our scaling assumptions to 

let R take the form 

R 

/   Rx   \ 

Ry 

\RZ ) 

0 

0 

(2.62) 
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to give the "residual mean meridional circulation", viz: 

v = v-e.fä 

W W   +   dy 
v'T 
Y7 

(2.63.a) 

(2.63.b) 

With the zonal mean R defined in equation 2.62, the governing equations become: 

D*u 
f* Dt 

D*v* 1 
+ fu H dyp   = 

pQgaT + dzp   = 

Dt 

F  + v'q' 

F 
0 

D*T     — 

dyv* + dzw* =   0 

(2.64.a) 

(2.64.b) 

(2.64.c) 

(2.64.d) 

(2.64.e) 

where D*/Dt = dt + v*dy + wkdz. There are five equations (2.64.a-e) and six unknowns; 

Ü, v*, üJ*, T, p, and v'q'. If the eddy term v'q' can be expressed in terms of variables 

on the left-hand-side of equation 3.27, then a closed set of prognostic equations for the 

zonal mean flow are obtained in which the eddies appear as a single body force in the 

zonal momentum equation. 

2.8.1    Eddy-propagation, transport and integral constraints 

The only eddy forcing term that remains in the zonal mean formalism is the divergence 

of the quasigeostrophic PV flux which under quasigeostrophic scaling is identically equal 

to the divergence of the Eliassen-Palm flux E: 

v'q' = V • E. 

E is given by 

E 
Ey 

Ez 

-(u'v') 

/»(f) 

(2.65) 

(2.66) 
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where f0 is a middle-latitude value of the Coriolis parameter. 

Under quasigeostrophic scaling the effect of eddies in the zonal average appears as 

a body force equal to the divergence of the Eliassen-Palm flux. Andrews and Mclntyre 

(1978a,b) showed that this flux depends on properties of the eddy disturbances. Using 

quasigeostrophic theory they introduced the generalized Eliassen-Palm relation for small- 

amplitude wave-like eddies; 

^F + V • E = V. (2.67) 
at 

Here A is the zonally-averaged wave activity; 

A = ^, (2-68) 

and V represents non-conservative eddy effects; 

V = ^, (2.69) 
% 

where x' ls the source and sinks of potential vorticity originating from frictional and/or 

diabatic effects given by 

*-£-f+l(?)- 
Equation (2.67) makes explicit the dependence of V • E on the physics of wave tran- 

sience and non-conservative effects. If the waves are conservative, V = 0, then A must 

increase in regions where E converges and decrease where E is divergent. E is therefore 

a useful measure of the propagation of wave activity. If the eddies are conservative and 

their amplitude does not change with time, then E is non-divergent, v'q' = 0 and eddies 

do not change mean properties. This is the non-acceleration theorem, first noted by 

Charney and Drazin (1961). Such a result is clear from (2.64.a), but not obvious from 

the Eulerian mean equations (2.29-e). In the latter case, the separate eddy forcing terms 

do not necessarily vanish even though V • E = 0, but instead modify the Eulerian mean 

circulation (v,w) to cancel the non-zero eddy terms. Thus we see that couching eddy 

terms as EP fluxes provides a useful measure of propagation of eddy wave activity and a 

clear framework to determine the effect of the eddies on the mean flow. Contours of V • E 
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show the zonal force per unit mass exerted by the quasigeostrophic eddies and yield the 

net, non-trivial, effect of eddies on mean flow. 

The Eliassen-Palm flux is also useful when thinking about the role of boundaries, 

particularly when used in conjunction with the PV sheets introduced in section 2.2.2. 

Thus, if the vertical component of E (that connected with eddy heat flux) is finite at 

an infinitesimal distance from the boundary, it is zero on the boundary itself in the 

presence of the PV sheet. This leads to a concentrated sheet of V • E representing PV 

fluxes associated with boundary temperature distributions. Figure 2.2 shows idealized 

schematic diagrams of the most unstable Eady and Charney modes. For the Eady mode 

(figure 2.2.a) E is independent of height and is therefore non-divergent in the interior. 

Thus concentrated regions of E divergence (PV sheets) are present at the upper and lower 

boundaries. Temperature perturbations at the lower boundary give rise to a divergent 

sheet and a compensating convergent sheet at the upper boundary. If the sheets differ 

in spatial structure, as in figure 2.2 where the lower sheet is of less meridional extent 

than that of the upper sheet, then there has to be a non-zero meridional component of 

E. As explained earlier this component, Ey is equal in size and opposite in direction to 

the momentum flux, as can be seen through (2.66). 

The picture for the Charney mode (figure 2.2.b) is somewhat different. Again, the 

temperature perturbations at the lower boundary give divergence, while the compen- 

sating convergence occurs in the interior around the steering level. In both cases the 

divergent lower boundary is active in the baroclinic instability process and the eddy 

forcing of the mean flow. 

In the presence of PV sheets there is an important and very useful integral constraint 

on V • E: 

V-Eott/ = 0, (2.71) / 
'Volume 

where the volume considered includes the sheets. Thus the eddies can provide no net 

force on the zonal mean flow, acting only to redistribute momentum within the flow. 

This momentum constraint will be exploited in chapter 3, to constrain our choice of the 
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(a) 
z = 0 

z = -H 
y = 0 

V.E<0 

V.E>0 y = L 

(b) 
z = 0 

z = -H 

■ 
■ 
* i 

V.E<0 

X \ / r 
y = 0 V. E>0 y = L 

Figure 2.2: Schematic meridional profiles of the Eliassen-Palm flux (arrows) and its 
divergence (solid and dashed lines) for the most unstable (a) Eady and (b) Charney 
modes. The thick solid line at the lower boundary represents a Bretherton PV sheet of 
divergent Eliassen-Palm flux (V-E > 0) arising from the boundary temperature gradients. 
The compensating convergence (V-E < 0) occurs at the upper boundary in (a) and in the 
interior in (b) occurring around the steering level. As equation 2.66 shows, the meridional 
component of E is equal in size and opposite to the direction of the momentum flux. The 
vertical component is proportional to the meridional eddy flux of heat. The regions of 
convergence and divergence have been drawn to have different meridional extent. Thus 
there has to be a non-zero meridional component of E and therefore a net lateral transfer 
of momentum. 
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spatial form of the eddy-transfer coefficients. 

2.8.2    The limit of vanishing relative vorticity flux 

It is notable that in the transformed equations, eddy temperature flux divergence terms 

do not appear on the right-hand-side of equation 2.64.d. This fact lies at the heart of the 

success of the parameterization of Gent and McWilliams (1990). There, the eddy-flux 

terms are related to an advective flux rather than to a diffusive process. In so doing, 

the diffusive nature of height coordinate ocean models, which had compromised them 

since their inception, was in large part removed. The Gent and McWilliams approach is 

in fact a limiting case of the methodology applied here, although the implementation is 

different. In equation 2.64.a the adiabatic nature of the eddy-transfer process is auto- 

matically guaranteed because the eddy-terms appear in the momentum, rather than the 

tracer equations. Thus the advecting velocities are changed by the introduction of an 

appropriate body force in the momentum equation, rather than explicitly in the tracer 

equation. What is more, the vorticity and temperature transferring properties of the 

eddies are handled together and expressed in terms of the eddy transfer of a potential 

vorticity that is more conserved than either vorticity or temperature alone. 

If relative vorticity fluxes are neglected then the eddy meridional flux of potential 

vorticity given by equation 2.15 reduces to: 

-ry      , d      (v'T')\ ^=%(VJ- (2-72) 

If, as proposed by Gent and McWilliams, the meridional temperature flux is related to 

the mean meridional temperature gradient thus 

dT 
v'V = -KT—, (2.73) 

where KT is the temperature transfer coefficient and is a scalar, then, using thermal 

wind, equation 2.72 becomes 

d (KTf
2du 

V'q' = d-Z{-N^d-Z)' <2-74) 
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where N2 is the buoyancy frequency.   The transformed zonal momentum equation can 

then be written: 

^-f^-r + ^-i^^) (275) 
Dt      JV +dz{ W   dz)' {      ] 

which is the zonal mean equivalent of equation 24 in Gent et al (1995). It shows that 

in this limit the eddy potential vorticity flux is equivalent to a vertical diffusion of zonal 

momentum with a coefficient Krf2/N2. This has been discussed previously; see, for 

example, Rhines and Holland (1979), Rhines and Young (1982), Greatbach and Lamb 

(1990) and Marshall et al (1993). 

In Gent and McWilliams (1990) the momentum equations are not transformed. They 

remain the Eulerian mean equations with the Reynolds stresses represented by Fickian 

diffusion terms. Temperature and tracer are advected with an 'effective transport' veloc- 

ity (a term coined from Plumb and Mahlman (1987)) which is explicitly calculated from 

the large-scale fields. The GM parameterization scheme has been the subject of much 

recent discussion (see, for example, Tandon and Garret (1996), Treguier et al (1997), Vis- 

beck et al (1996)) and modified approaches have been offered for prescribing the 'bolus' 

velocity (e.g. McDougall and Mclntosh (1996) and Dukowicz and Greatbatch (1997)). 

It is well documented that GM leads to marked improvements in the ability of height 

coordinate models to capture and maintain water mass distributions: see, for example, 

Böning et al (1995), Danabasoglu and Mcwilliams (1995), Robitaille and Weaver (1995), 

England (1995), and Hirst and McDougall (1996). However, there still remains the need 

for the representation of vorticity and momentum transport by geostrophic eddies. Gent 

and McWilliams (1996) address this issue by considering, as here, the transformed Eu- 

lerian mean equations. However, in their equations 8-9 the residual mean circulation 

is not a prognostic variable as in our equation 2.64.b and so has to be explicitly cal- 

culated using a closure assumption. Moreover, instead of parameterizing the eddy PV 

flux, they parameterize the individual components of the Eliassen-Palm momentum flux 

in terms of downgradient momentum diffusion together with a Coriolis term. Therefore 

any unmixing of momentum - upgradient transfer - will not be captured. 
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2.9    Summary 

We have performed a mathematical transformation of the Eulerian mean equations. This 

transformation was combined with the assumption that the eddy field is quasigeostrophic 

and hydrostatic in nature. The result was a set of governing equations for the transformed 

Eulerian mean flow in which the eddy term appears a PV flux acting as a body force 

in the momentum equations. By using the complete TEM framework, we are able to 

encapsulate both the heat and vorticity transporting properties of the eddy field without 

having to parameterize them separately, provided that we focus on the eddy transfer of 

potential vorticity. 

The prognostic and advective velocity is that of the residual mean circulation - a 

movement of fluid parcels that is associated with diabatic processes. Under certain 

conditions it is equal to the effective transport velocity identified by Plumb and Mahlman 

(1987) as the relevant velocity for meridional atmospheric tracer transport. 

A limiting case of our approach for zonal mean flows, leads to a different implementa- 

tion of the scheme advocated by Gent and McWilliams (1990). Their parameterization 

has lead to improvements in water mass distributions and transport because they trans- 

form the temperature equation so that the eddy temperature flux terms become implicit. 

However, because the momentum equations are not also transformed, vorticity is arbi- 

trarily transferred down its mean gradient. 

The procedure undertaken was to redefine the mean velocity field, and then system- 

atically scale the remaining eddy terms. The steps are summarized in Figure 2.3. 
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Eulerian Mean 

mean quantities: { v,,v,w,T,p } 

eddy terms: momentum fluxes 

temperature fluxes 

step 1: transform u to v* 

Transformed Eulerian Mean 

mean quantities: { ü\TP,SP,T,p } 

eddy terms: momentum fluxes 

temperature fluxes 

step 2: scale for quasigeostrophic eddies 

Transformed Eulerian Mean: QG eddies 
mean quantities: { u*,v*,W,T,p } 

eddy term: PV flux in momentum eqn. 

TEM - time mean 

mean quantities: { v?,v*, w*,T, p } 

eddy term: —k x (u'q1) 

TEM - zonal mean 
mean quantities: { ü, ü*,W*,T,J5 } 

eddy term: v'q' in ü eqn. 

Figure 2.3: Schematic diagram of the procedure followed in chapter 2. The two steps 
shown yield sets of governing equations for the transformed Eulerian mean flow in which 
the eddy term appears a PV flux acting as a body force in the momentum equations. 
The prognostic and advective velocity is that of the residual mean circulation. 
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Chapter 3 

Closure for the eddy PV flux 

3.1 Introduction 

In chapter 2, we found that the application of TEM theory and an assumption about the 

eddies, led to a set of equations in which the eddy terms appear symbolically as a PV flux. 

This term acts as a body force term in the momentum equations. This chapter presents 

the method of closure for the eddy PV flux in terms of the mean flow parameters, if it is 

not explicitly resolved in the model. I have chosen to present this in a separate chapter 

to emphasize the fact that the closure assumption is independent of the TEM approach. 

3.2 Downgradient PV transfer 

The subject of parameterization and closure is one that has been studied often [see the 

textbooks by Tennekes and Lumley (1972) and Stull (1988)] mainly because solutions 

have to be found on a case-by-case basis. The course pursued here will be a diagnostic 

approach referred to as "first-order closure". It is a diagnostic approach because no 

prognostic equation is used to predict for the eddy PV flux. Instead closure for the eddy 

term will depend on the size and structure of the large-scale PV field diagnosed from the 

model.   "Mixing length theory" is applied to the PV transfer problem at hand, which 
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results in a "flux-gradient" relationship for the eddy transfer of PV. The mixing length 

hypothesis is a kinematic argument, and considers the displacement of a parcel of fluid 

which then "mixes" its characteristic PV with its surroundings. 

If a fluid parcel, and its associated PV, is displaced in the meridional direction between 

two points y = 0 and y — y + Ay, then the ambient PV will have changed by an amount 

- Aq. If we assume that the PV perturbation associated with the parcel is q' which is 

~ Ag, and also assume that the transport length scale is of the same order as a length 

scale characterizing the mean flow /, then 

q' dq 
r*j 

and so 

(3-1) 
V        dy K    ' 

'—'!• (3-2) 

Hence, the mean eddy PV flux is given by 

W=~Kp-, (3.3) 
dy 

where 

Ä" ~ ü7*7, (3.4) 

is the eddy transfer coefficient.1 Equation 3.3 is a kinematic condition. At this point the 

problem is not closed. To do so demands that the transfer coefficients be specified. This 

requires knowledge about the dynamics of the eddy transfer such as the mechanism for 

eddy generation, the eddy velocity scale, and eddy length scales. 

From equation 3.4, we can see why mixing length arguments fail, as noted in chapter 

1, for the case of momentum transfer. The dynamics of the momentum transfer have 

to be considered, because pressure gradients can change v' significantly during the eddy 

displacement. Indeed this is true for any non-conserved or non-quasi-conserved quantity - 

the non-conservative term will, in general, change the quantity of interest during transfer. 

1Note: The K is termed an "eddy transfer coefficient" rather than an "eddy diffusivity". The reason 
for this will become apparent later. 
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The result of the non-conservative terms are to invalidate equation 3.1. However, due 

to the recasting of the equations of motion, it is no longer necessary to deal with the 

problem of how to represent the eddy momentum flux divergence, because we no longer 

have to separately parameterize the eddy transfer of momentum and heat. 

Extending equation 3.3 to three-dimensions, we have the flux-gradient relation: 

uY = -K • Vq, (3.5) 

where V = (dx,dy). This approach for PV transfer has also been employed by many in- 

vestigators [e.g. Green(1970); Rhines (1977); Marshall (1981); Rhines and Young (1982): 

Pavan and Held (1996)]. 

The eddy transfer coefficients of PV are 

K      K 

■**-vx      f*vy 
(3.6) K: 

and can be considered to be comprised of two parts: 

K = Kjso + K.adv (3-7) 

where Kiso is symmetric (diagonal elements) and is associated with isobaric mixing, and 

Kadv is anti-symmetric (off-diagonal elements) and is associated with eddy advection 

(Plumb and Mahlman (1987)). 

Note that the quasigeostrophic PV transfer is two-dimensional, acting only in the 

horizontal (along isobaric surfaces). This two-dimensional transfer nature is also true for 

Ertel PV which acts along isentropic surfaces - see the impermeability theorem in Haynes 

and Mclntyre (1990). This is a tremendous advantage over having to parameterize a field 

- such as temperature - that is transfered in three-dimensions. For baroclinic eddy heat 

transport in the atmosphere and ocean, the vertical component of the flux is upgradient. 

As a consequence, the transfer coefficients manifest themselves as a tensor quantity which 

results in a vector transport that is directed downgradient. In contrast, due to the 

horizontal mixing of PV, the ICs in equation 3.6 are scalar quantities which can vary 
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spatially and temporally, Green (1970). This two-dimensional nature of PV transfer will 

prove to be of tremendous benefit, when interpreting the structure and size of the if's 

determined from eddy-resolving calculations. 

3.3    Specification of the if's for zonal mean flows 

As highlighted in chapter 2, the momentum constraint for time-mean flows is not as clear 

as for the zonal mean flow problems. This is because in the time mean theory, the global 

volume integral of the eddy PV flux does not necessarily vanish. As a result, in this 

thesis, a parameterized model will only be developed for zonal mean flows where eddy 

closure is at its most tractable. 

As stressed by equation 2.71, any parametric representation of the eddy flux of po- 

tential vorticity must be applied with care to ensure zonal momentum conservation. This 

is because the zonal mean meridional eddy flux of potential vorticity over the volume 

of fluid vanishes. That is, the total zonal momentum can be changed only by external 

forces and friction, and not by the internally generated eddies. This provides an integral 

constraint on the eddy PV flux term; 

/      /     v'q'dydz = 0. (3.8) 
J-H JO 

Substituting equation 3.5 into equation 3.8, the condition can be expressed as a constraint 

on the K's thus: 

l     I V Kvyqy dy dz = 0, (3.9) 
J — H JO 

where K = Kvy. The transfer coefficients must be chosen in order to satisfy equation 

3.9. 

The determination of the spatial structure of K is admittedly a problematic feature of 

the flux-gradient relationship. Conventionally the horizontal and vertical structure of the 

transfer coefficient have assumed to be of separable form. The horizontal structure can 

be given by the large-scale flow, such as a dependence on a Richardson number or mean 
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velocities or velocity shears. A crucial issue is the question of what is the appropriate 

horizontal length scale that is characteristic of the eddy transfer. In the parameterization 

problem of mid-latitude synoptic scale eddies in the atmosphere, Green (1970) chose the 

characteristic length scale to be the width of the baroclinic zone. In contrast, Stone (1972) 

argued for the mixing length scale to be that of the deformation radius. Simmons (1974) 

suggested that the appropriate scale should be the geometric mean of the two lengths. 

However, in the atmosphere all three are on the same order and so the model results are 

not critically sensitive to the choice made. In comparison however, the problem of eddy 

transfer length scales in the ocean is much more complicated and is still the subject of 

much work [Visbeck et al. (1996))]. 

The choice of the vertical dependence is even more problematic. The simplest possi- 

bility is a K that is independent of depth. If this were the case, the momentum constraint 

(equation 3.9) would only be satisfied for special distributions of q. Further, it would 

make more physical sense if the transfer coefficients were allowed to vary in the vertical 

to reflect differing PV gradients with depth. For example, at a level where the PV gradi- 

ents are relatively strong compared to other depths, we would expect a small value of K. 

This is because the eddy motion, and therefore property transfer at this depth is more 

constrained by the presence of the strong gradients. 

There is one constraint and so we have one free parameter with which to ensure that 

equation 3.9 is obeyed for our closure scheme. We choose to specify the ICs as follows: 

K(y,z,t)  =  KrefY(y)T{t)  (l + T|:) • (3.10) 

Here Kref is a reference value which depends on the nature of the flow [for example as 

in Visbeck et a/.(1996)], Y(y) prescribes the meridional structure, and T(t) the temporal 

form. The vertical structure is assumed to be linear with a scale height of H/y where 

H is the total depth of the fluid and 7 is the free parameter which will be chosen so 

that equation 3.9 is satisfied. Substituting equation 3.10 into equation 3.9 we obtain an 
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expression for 7 which satisfies the momentum constraint: 

7 = - (/ / Y(y) qy dy dz) / (^ j J z Y(y) qy dy ifa) . (3.11) 

7 is a measure of the depth-weighted mean PV gradients, and so the vertical profile of the 

transfer coefficients depend on the PV distribution. Calculation of the PV gradients, qy: 

and specification of Y(y) (either through a analytical function or through dependence on 

the large-scale flow fields) allows determination of 7 and therefore the transfer coefficients, 

K. At the side walls eddy transfer is inhibited and as a result the UTs are set to zero, 

preferably with a taper profile to avoid generating numerical noise. 

With knowledge of the transfer coefficients, equation 3.5 closes for the eddy potential 

vorticity flux, and thus the divergence of the E-P flux. Note that, unlike in Gent and 

McWilliams (1996), we have not attempted to parameterize the component parts of the 

E-P flux separately, because we do not know how to do so. Instead we have phrased our 

closure in terms of the PV flux. 

It is emphasized that the assumptions of eddy mixing behind the application of equa- 

tion 3.5 is that the eddies act to "flux down the mean gradient". This is not the same as 

assuming they act in a "diffusive" manner. Indeed it is suggested that the flux-gradient 

description is useful for eddy transport even though the eddies act in diffusive and advec- 

tive manner, Plumb and Mahlman (1987). Even so, the down gradient flux assumption 

remains highly controversial. It cannot be formally proved, and circumstances can arise 

in which it is not true. It may be useful to regard equation 3.5 as a definition, and then 

the debate revolves around the transfer coefficients K - are they positive, and how do 

they depend on large-scale properties of the flow? 
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Chapter 4 

Zonal Mean Flows 

4.1    Introduction 

To illustrate the ideas outlined in chapter 2 and to test the approach to parameterization 

presented in chapter 3, we present calculations with a three-dimensional HPE numerical 

model that resolves the baroclinic eddy field. The zonal-mean problem is studied first, 

because it is the simplest context in which to explore how to proceed. The rationale is 

that in these zonal flows, eddy closure, although still a very difficult problem, is at its 

most transparent due to the inherent spatial symmetry. 

We compute the eddy statistics of interest, average zonally and consider them in the 

light of the theoretical ideas presented in chapters 2 and 3. We then compare the resolved 

model with a zonally-averaged one which implements TEM with eddy-PV flux forcing. 

The numerical model used is described in Appendix A. 

Sections 4.2 and 4.3 present and discuss the parameterization approach in a /?-plane 

channel and compares the parameterized model to an eddy-resolving calculations. First, 

the flow is driven by wind stress at the surface, while the latter section considers the spin- 

down of a baroclinic zone. Finally, section 4.4 looks at the limits of the parameterized 

model in the context of tropospheric eddies in the atmosphere. 
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4.2    Eastward Flow in a /?-plane channel 

4.2.1    The eddy-resolving model 

We simulate the wind-driven flow of an ocean in a periodic channel on a ß plane of width 

500 km, length 1500 km, and depth 4500 m (see figure 4.1). The calculation can be 

regarded as a primitive-equation counterpart of the kind studied by McWilliams et al. 

(1978) quasigeostrophically. It can be considered to be an analogue of a segment of the 

Antarctic Circumpolar Current, although here our jet is in the northern hemisphere! 

4500 m 

500 km 

Figure 4.1:  A schematic diagram of the channel model domain.   A sinusoidal westerly 
wind stress drives an eastward flow along the axis of the channel 

A wind-stress is applied to the upper level of the model of sinusoidal form: 

r = r0s.n   -   . (4.1) 

It has a maximum value of 0.2 Pa at the center of the channel and is zero at the side 

walls. The initial stratification is constant.  The vertical grid spacing was 50 m in the 
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upper layer increasing to 400 m in lower layers. Friction is present through a bottom 

drag in the lower layer and biharmonic viscosity to suppress numerical noise on the grid- 

scale. There is no thermodynamic forcing (G = 0) and no Fickian diffusion terms. Static 

instability is released by convective adjustment. The numerical experiments carried out 

in this section are summarized in Table 4.1. The equation of state is a linear function of 

temperature - henceforth our discussion can be in terms of temperature and temperature 

flux alone. 

Before examining the steady state solution it is appropriate to consider the spin-up 

of the model from rest. The time development of the surface temperature and velocity 

fields is shown in figure 4.2. The wind stress drives a southward Ekman flow in the 

upper layer which returns northward in an Ekman layer at the bottom. This results in 

downward Ekman pumping in the southern half of the channel and Ekman suction to 

the north. The resulting meridional overturning leads to a deepening of isotherms in the 

south and a shoaling to the north. In this way a lateral temperature gradient develops 

across the channel which supports a surface-intensified jet in thermal wind balance. After 

a year or so the jet develops growing meanders due to baroclinic instability, as shown in 

figure 4.2.a. These eddies continue to grow, releasing available potential energy as they 

reach finite amplitude, figure 4.2.b, until wave breaking occurs and coinciding with a 

conspicuous decrease in the zonal velocity of the jet. Following the initial instability the 

eddy field exhibits more irregularity with a broader spectrum of sizes. Finally, after six 

years or so - see figure 4.2.c - a statistically steady state is reached in which the input of 

potential energy by the wind is equilibrated by its release through baroclinic instability. 

The model was integrated for 20 years and the statistically steady state was reached after 

approximately 6 years. This is indicated by figure 4.3 which plots the times series of the 

available potential energy per unit mass per unit volume; 
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Parameter units Eddy-resolving model Parameterized model 

/o s-1 1 x 1(T4 1 x 10~4 

Wind-stress, r Pa 0.2 0.2 

Bottom drag s-1 1 x 1(T5 1 x 10"5 

x-domain km 1500 — 

y-domain km 500 500 

Depth m 4500 4500 

Horizontal grid size km 20 20 

Vertical grid size m 50-400 400 

Vertical levels 21 12 

Initial stratification (iV//0) 21 21 

Rossby radius (NH//0) km 95 95 

Horizontal diffusivity 2    —1 m s 0 0 
Biharmonic diffusivity 4    —1 rrvs 0 0 
Vertical diffusivity 2    —1 m s 0 0 

Horizontal viscosity 2    —1 mrs i 0 0 
Biharmonic viscosity 4   —1 m s 1 x 1011 1 x 10n 

Vertical viscosity mrs L 0 0 

•**-pv 
2    —1 

77TS   L - 1050 
T(t) - linear ramp: 30 days 

Y(y) - 0, y = 0, Ly 

l,0<y<Ly 

Table 4.1:  Parameters for the eddy-resolving and parameterized stress-driven channel 
experiments. 
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420 days -0.4    0    0.4 

750 
x(km) 

1000 1250 1500 

Figure 4.2: Surface velocities from the eddy-resolving model after 420, 460, and 3900 
days. The temperature is contoured and shaded with lighter shading denoting warmer 
lighter water. The panels on the right display the corresponding mean zonal surface 
velocity in ms"1. 
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and the kinetic energy per unit mass per unit volume; 

K = ^J 1 J(u2 + v2)dxdydz. 

The time-average was obtained by averaging the last 10 years of integration. 

i          i          i          §          i          i          i          i          i 

(4.3) 

0.2- 

0.18- 

0.16- 

0.14- 

0.12- 

0.1 - 

0.08- 

0.06- 

0.04- 

0.02- 

1 
I 

O                 2                 4                 6                 8                10              12               14              16               18              20 
years 

Figure 4.3: The times series of the available potential energy (heavy line) and kinetic 
energy (thin line) per unit mass per unit volume.  The available potential and kinetic 
energies increase until about day 400, when the ratio APE:KE is 7.5:1 at which point 
Rossby wave breaking occurs, releasing available potential energy and causing a conspic- 
uous decrease in the available potential and kinetic energies. After six years or so, a 
statistically steady state is reached where available potential energy is three times the 
kinetic energy. 
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Equilibrated state 

The zonal mean zonal velocity in the equilibrated state is characterized by a surface- 

intensified jet (figure 4.4.a) in thermal wind balance with the temperature field in figure 

4.4.b. Maximum surface velocities are 0.24 ms~l in mid-channel, reducing to zero at the 

side walls. The Eulerian mean meridional streamfunction is plotted in figure 4.5.a and is 

that of the stress-driven Ekman flow. It consists of southward transport at the surface 

with sinking in the south and northward return flow at depth. This Eulerian mean flow 

deepens the isotherms in the south and shallows them to the north, acting to increase the 

meridional temperature gradient. This stress-driven overturning rate has a maximum in 

mid-channel of 4.00 Sv. However, in the transformed Eulerian mean framework, equation 

2.64.d states that 

v"Ty + vfTz = 0, (4.4) 

in the equilibrated state. If we write the residual mean circulation in terms of a stream- 

function; 

X* = XEui + Xflux, (4.5) 

where the streamfunctions XEui and Xflux are those of the Eulerian mean and buoyancy 

flux terms respectively, equation 4.4 can now be restated as 

J(X*,T) = 0. (4.6) 

For the stress-driven channel at hand, the only physical solution to equation 4.6 is that 

there is zero residual mean circulation: x* — 0. That is the residual mean overturning 

circulation has vanished. The wind-driven Eulerian mean circulation is exactly canceled 

by the terms involving the buoyancy fluxes in equation 2.63.a-b. The streamfunction 

involving the buoyancy flux terms, Xflux, is plotted in figure 4.5.b and it is opposite in 

direction and equal in magnitude almost everywhere to the Eulerian mean streamfunc- 

tion. At any latitude Xflux is constant with height except for the upper 500m in the 

channel center. This overturning rate has a maximum in mid-channel of 3.98 Sv. For the 
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Figure 4.4: The eddy-resolving eastward flow in a /3-plane channel. The time-averaged 
meridional cross-sections of: (a) zonal mean zonal velocity (ms-1); (b) zonal mean tem- 
perature. The time average was taken from 10 to 20 years. 
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Figure 4.5: The wind-driven Eulerian mean streamfunction, XEui, in (a) is almost exactly 
canceled by Xfiux in (b). Units are Sv. The result is the near vanishing of the residual 
mean overturning circulation. 
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turbulent, non-linear, primitive equation eddy resolving flow at hand there exists a very 

small non-zero residual mean circulation (over the time interval of the time averaging), 

the running average of which asymptotes to zero. Thus the TEM framework provides a 

clear understanding of the equilibrated zonal mean fields of the stress driven channel. 

Eddy statistics and transfer characteristics 

Vorticity and potential vorticity fluxes 

In the steady state the depth-integral of the zonal momentum equation, (equation 2.64.a), 

is: 

/    vWdz+f    Txdz = 0. (4.7) 
J-H J-H 

Using equation 2.65, our definition of E_, equation 2.66, and noting that Ez is zero at the 

top and bottom boundaries, equation 4.7 yields: 

/     -—u'v' dz+        Fxdz = 0. (4.8) 
J-H    ay J-H 

Integrating over the channel we have: 

/ F dV = 0, 
Jv 

Note that at any latitude f_H Fx dz ^ 0; the bottom stress does not exactly balance the 

surface stress. Their difference is equal to the vertically integrated potential vorticity flux, 

which itself is exactly equal to the vertically integrated relative vorticity flux - see figure 

4.6. Thus the effect of the eddies is to transfer eastward momentum into the center of the 

eastward jet resulting in a zonal mean eastward body force that sharpens and intensifies 

of the mean zonal flow. Thus eddies pump eastward momentum in to the jet, taking 

it from the flanks. The net effect of the eddy vorticity transfer, then, is to sharpen the 

jet with momentum being transferred up its large-scale gradient. This sharpening and 

intensification is shown by the depth-integrated v, in figure 4.7. The structure of the eddy 

momentum flux can be understood in terms of a asymmetry in the horizontal structure 
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Figure 4.6: The depth integrated PV flux. At any latitude the bottom drag does not 
exactly balance the surface stress and the difference is balanced by an eddy flux of PV. 
A positive (eastward) body force is exerted on the zonal flow in the center of the channel 
and a negative (westward) body force is exerted on the flanks of the jet. 

of the eddies. The eddy velocities (u',v) have a zero zonal mean, but their product 

can be nonzero if the eddy pressure troughs and ridges display horizontal tilt. Consider 

a symmetric low pressure perturbation straddling the jet center. The perturbation will 

begin to propagate westward, but due to the mean zonal velocity in which the eddy 

disturbance is embedded the westward propagation will depend on meridional position. 

This will deform the perturbation into a 'banana-shaped' pattern as shown in figure 4.8. 

To the south of the jet axis the isobars slope in a southwest-northeast sense to give a 

northward eddy flux of eastward eddy zonal velocity in the zonal mean. North of the jet 
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Figure 4.7:  The depth average of the zonal mean zonal velocity in the eddy-resolving 
equilibrated state. 

axis, the isobars exhibit a southeast-northwest tilt which in the zonal mean results in a 

southward eddy flux of eastward eddy zonal velocity. 

We now examine the eddy-flux quantities of the eddy resolving flow. The budget for 

the eddy potential vorticity variance (enstrophy) with the quasigeostrophic scaling for 

the eddies is 
/ nl2\ /n'2\ 

q'D (4.9) ;£)(+vv.v,+v.v(£; 
where D are dissipative terms. Figure 4.9.a shows the surface velocities and temperature 

contours after 3660 days. The corresponding surface maps of \'q' • Vqx (figure 4.9.b) shows 

that instantaneously v'q' ■ Vqx can vary spatially taking both positive and negative values 

83 



U V  < 0 
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U V  > 0 
v < o Y 

v >0 > u'v' <0 

v>0 vu'v'>o 
u > o 

Figure 4.8: Eddy momentum fluxes associated with a 'Banana-shaped' eddy. The eddy 
velocities (u ,v') have a zero zonal mean, but their product can be nonzero if the eddy, 
as here, is anisotropic. To the south of the jet axis the trough slopes in a southwest- 
northeast sense inducing a northward eddy flux of eastward eddy zonal velocity ÜV > 0. 
North of the jet axis, the troughs tilt southeast-northwest and u'v' < 0. Thus the effect 
of the eddies is to transfer eastward momentum into the center of the eastward jet from 
the flanks. This effect is well known in the atmospheric literature, see for example, Starr 
(1968) and Houghton (1977). 

depending on whether the eddy disturbance is growing or decaying and/or on advection 

of PV variance by the mean flow. The zonal mean (figure 4.9.c) at this time has latitudes 

of v'q' ■ Vqx being positive as well as negative, indicating that instantaneously, potential 

vorticity transfer may not locally be downgradient (although globally it will be). However, 

the time average over the last ten years (figure 4.9.d) shows that the PV transfer is down 

the mean gradient at all latitudes north of 80km.   To the south of 80km the mean 
■jxt 

PV gradient changes sign but v'q'    does not, due to the finite size of the eddies, and 
7i£ 

as a result v'q'    ■ Vqxt is positive.   Figure 4.10.a plots the meridional profile of v'q' ■xt 
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Figure 4.9: (a). Surface velocities from the eddy-resolving model after 3660 days. The 
temperature is contoured and shaded with lighter shading denoting warmer lighter water; 
(b) Surface map of v'q' ■ Vqx after 3660 days. Positive (negative) values are contoured 
with a solid (broken) line. The contour interval is 5 xlO-13 s-3. (c) v'q'x • Vqx at this 
time, (d) time average ■v'q' • Vqxt. The negative values indicate downgradient transfer 
of quasigeostrophic PV. 
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diagnosed from the model and shows eddies exert a positive (eastward) body force in the 

lower sheet and a negative body force in the upper PV sheet. This can be understood 

when we consider the zonal momentum balance written thus: 

■TXt l dfxt 

0   =   vy" + -—   , (4.10) 
Po OZ 

-jxt 
0   =   v'q' (4.11) 

0   =   v^xt-tüxt (4.12) 

for the upper boundary, interior, and the lower boundary of the channel respectively. 

Thus in the upper layer the imposed wind stress is balanced by a southward eddy flux of 

potential vorticity. In the lower layer the bottom stress is balanced by a northward eddy 

flux of potential vorticity. In the interior the meridional eddy flux of potential vorticity 

is very small and the Eliassen-Palm flux is non-divergent. 

The zonal-mean eddy flux of temperature - see figure 4.10.b - is almost constant with 

height in mid-channel but weakens as the surface is approached. However v'T'/N2 is 

almost constant with depth since N2 is weaker in the upper km - this was exploited 

by Johnson and Bryden(1989) and Marshall et al.(1993) in their simplified models of 

the Antarctic Circumpolar Current. The temperature flux characteristics are broadly in 

accord with the Eady model of baroclinic instability. 

Eddy transfer coefficients 

We now inspect the sense of the meridional eddy flux of PV with respect to the mean 

PV gradients to assess whether the flux-gradient eddy closure hypothesis (equation 3.5) 

is appropriate. The meridional profile of the transfer coefficients for the upper and lower 

PV sheets are shown in figure 4.11. All values of K are positive except near the boundary 

where, as noted before, the PV gradient is negative. In the upper sheet K ranges from 

~ 200 m2s~l in the center of the jet, where the mean PV gradients are a maximum, 

to ~ 900 m2s~l at the northern flank where the mean gradients are weaker. On the 

southern-flank of the jet the diagnosed K is negative where the sign of the mean potential 
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Figure 4.10: Meridional cross-sections of; (a) The eddy PV flux v'q'   is dominated by the 
boundary sheets with divergence at depth and surface convergence; (b) The eddy-flux 

The contour interval is 1 xlO"3 ms~lK.   (c) The eddy-flux of zxt 
of temperature, v'T' 
momentum, u'v'x . The contour interval is 1 xlO-3 2    —2 
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Figure 4.11: The diagnosed transfer coefficients for quasigeostrophic potential vorticity 
in the upper PV sheet (circles) and the lower PV sheet (crosses) in the statistically steady 
state. 

TXt 
vorticity gradient changes sign but v'q' does not. In the lower sheet the values of K are 

higher than in the upper sheet reaching a maximum value of ~ 6900 rrfs'1 in the jet 

center. A local minimum is found on either side of the jet in regions where the mean PV 

gradients have slight maxima. Thus the structure of the diagnosed transfer coefficients 

is quite complex in both the horizontal and vertical. This complexity is further revealed 



when we plot v'q'x against qf for each sheet (figure 4.12). If the transfer were truly local 

and directed downgradient then the slope of v'q' vs. q*1 would be —K. Figure 4.12 

shows that for the upper sheet the line is not straight but rather doubles back to form a 

partly open curve suggesting that for any particular value of the gradient there are two 

values of eddy PV flux. This is because different values of qy occur on either side of the 

jet center, and have different eddy fluxes associated with them. 
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Figure 4.12: Plot of (v'q1) vs. q  for the PV sheets. 
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Figure 4.13: The depth-integrated Eliassen-Palm flux divergence calculated using the 
geostrophic streamfunction (solid line), as described in the Appendix, and from the full 
fields (dashed line). The very close correspondence between the two demonstrates the 
assumption that the eddies are quasigeostrophic in nature is an excellent for the stress- 
driven channel flow. 

How quasigeostrophic are the eddies? 

We showed in chapter 2 that if the eddies obey quasigeostrophic scaling, then their effect 

on the mean flow can be represented by a single term, an eddy PV flux, acting in the 

zonal momentum equation. Thus we now evaluate the depth-integral of this term using 

two different methods. In the first we use the geostrophic streamfunction and therefore 

geostrophic scaling; in the second we use the full primitive fields. Figure 4.13 re-plots the 

depth-integrated eddy potential vorticity flux (f°_H üyxi dz) from figure 4.6 as a solid 

line. Also shown is the depth-integrated Reynolds stress divergence (f°H -{u'v')y
x dz) 
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using the full primitive fields. The close correspondence between the two in shape and 

magnitude demonstrates that the quasigeostrophic scaling for the eddies is valid and 

correctly captures the structure and size of the eddy-forcing of the zonal mean flow. 

4.2.2    The parameterized model 

The equivalent wind-driven experiment was performed in the parameterized model (see 

Table 4.1). The governing equations are given by equations 2.64.a-e, where we represent 

the meridional eddy flux of perturbation quasigeostrophic potential vorticity by a down- 

gradient transfer of mean potential vorticity with the coefficient K in the form expressed 

by equation 3.5. 

The magnitude of Kref was chosen so that the peak of the depth-integrated transport 

in the zonally-averaged model matched that of the eddy-resolved calculation. As in the 

eddy-resolving model, the wind stress drives a southward Ekman flow in the upper level 

of the model which results in downward displacement of isotherms in the southern half 

of the channel. The meridional flow returns within the Ekman layer at the bottom level 

of the model inducing upward isothermal displacement to the north. This gives rise 

to a linearly increasing lateral temperature gradient across the channel which, through 

thermal wind, supports a surface-intensified jet. During this time the contribution to the 

quasigeostrophic PV from the relative vorticity and stretching terms increases as the flow 

field evolves. At each time-step the eddy PV transfer coefficient K is calculated from the 

evolving fields using the momentum constraint equation 3.10. 

Early in the evolution, the quasigeostrophic PV is everywhere dominated by the 

planetary vorticity gradient, ß, and so the gradients of PV do not change sign and K is 

set to zero. As the isotherms tilt, the temperature perturbations at the lower boundary 

give rise to a contribution to the PV that acts to offset /?; eventually leading to a reversal 

in the PV gradient. Once the momentum constraint, equation 3.9, is satisfied for all 

K(y, z,t) > 0 the flow satisfies conditions for baroclinic instability. At this time the 

ÜT's are increased linearly with time, crudely simulating the growth of the baroclinic 
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instability. The evolution of the global mean K is displayed in figure 4.14.a and shows 

that after 5 years the model is in a steady state. 
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Figure 4.14: (a) The time series of the global average K (m2s~l) in the parameterized 
model; (b) The steady state K profile with nref = 1050 m2s~l (7 = -3.21). 

The mean zonal velocity (figure 4.15.a) consists of a surface- intensified jet in the 

channel center with weak return (westward flow) at depth on the flanks. The zonal 

velocity is in thermal wind balance with the temperature field shown in figure 4.15.b. It 

compares favorably with the mean flow of the resolved calculation - see figures 4.4a, b. 
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Figure 4.15: Steady state meridional cross-sections from the parameterized model: (a) 
zonal mean zonal velocity (ras-1); (b) zonal mean temperature. 

93 



The steady state zonal momentum balance throughout the fluid is 

0 = Fx + v'q'\ (4.13) 

The balances in equation 4.13) are shown in figure 4.16. At the upper boundary (figure 

4.16.a) the wind stress is balanced by the term representing the eddy flux of quasi- 

geostrophic potential vorticity giving a sheet with a southward eddy flux of potential 

vorticity. At the bottom (figure 4.16.c) the stress is balanced by the parameterized terms 

representing a northward eddy flux of potential vorticity. In the interior (figure 4.16.b), 

there is no applied force, thus in the steady state the eddy PV flux is zero. Because of 

the flux gradient relationship assumed for the eddy PV flux (equation 3.5), this means 

that the interior PV gradients are zero. This compares favorably to the eddy-resolving 

model where interior PV gradients, away from the side wall, are small when compared 

to/?. 

The reference transfer coefficient in the upper layer was specified to be 1050 m2s~l. 

In the steady state the value of the free parameter 7 was -3.21, giving 

Ä" = lO5o(l-3.21-j0     mV1. (4.14) 

Figure 4.14.b shows the K profile. The transfer coefficient becomes large in the lower 

PV- sheet to compensate for the small negative potential vorticity gradient there, just 

as for the K's diagnosed from the resolved model. As shown in figure 4.16 the steady 

state v'q' consists of boundary sheets with divergence at the lower horizontal boundary 

and convergence at the surface. The meridional profile is shown in figure 4.17.a. This 

is consistent with the PV flux signature for the eddy resolving calculation. The depth- 

integrated parameterized eddy PV flux is plotted in figure 4.17.b and shows that the effect 

of the eddies is to exert a positive (eastward) body force on the zonal momentum in the 

center of the jet and a negative (westward) body force on the flanks. Thus momentum 

is transferred upgradient into the jet center resulting in the depth integrated zonal flow 

shown in figure 4.18.  This agrees with diagnosed eddy-forcing of the zonal mean flow 
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Figure 4.16: The stress (dashed) and eddy flux of quasigeostrophic potential vorticity 
(solid) terms in the steady state momentum equation for; (a) the upper layer; (b) the 
interior; (c) the lower layer. Equation 4.13 is exactly satisfied. 

from the eddy resolving flow and demonstrates that the zonal average model can capture 

this rather subtle aspect of eddy-mean-flow interaction. 

One shortcoming of the zonal average model is that it fails to take into account some 

of the nonlocal effects. The resolved fields exhibit a change in sign of the surface quasi- 

geostrophic potential vorticity close to the southern vertical wall which is absent from 

the parameterized model. A second difference is that the magnitude of the parame- 

terized depth-integrated eddy PV flux is 25% less than that diagnosed from the eddy 

resolving calculation. The size of the potential vorticity flux in the upper sheet in each 
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Figure 4.18: The depth average of the zonal mean zonal velocity in the (a) parameterized 
model; (b) eddy-resolving model. 

model is very similar (it has to be because through equation 4.13 it has to balance the 

surface-stress in each model), but the magnitude of the positive potential vorticity flux is 

underestimated in the parameterized model. Since this flux acts to balance the bottom 

drag, the velocities at depth in mid-channel are smaller for the parameterized model as 

can be seen by comparing figures 4.4.a and 4.15.a, even though the depth-integrated zonal 

mean flow are very similar.  Consequently the depth integral of this potential vorticity 
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flux is smaller for the parameterized case. 

Despite these differences, the parametrically represented eddy transfer of buoyancy 

and momentum display the same characteristics as the eddy resolving calculation and as 

a result the zonal mean fields are in very good agreement. 

4.3    Spin-down of a baroclinic zone on a /?-plane 

We now consider, following Gent et al. (1995) and Visbeck et al. (1996), the spin-down 

of a baroclinic zone in the absence of external forces, apart from a bottom drag at depth. 

Again, we compare calculations from the three-dimensional numerical model that resolves 

the baroclinic eddy field to the zonal average model where we parameterize the eddy PV 

transfer. 

4.3.1    The eddy-resolving model 

The sloping zone is characterized by meridional temperature profile displayed in figure 

4.19. The initial stratification is of constant value in the vertical. The slope is uniform 
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Figure 4.19: Spin-down of a baroclinic zone. The initial temperature cross-section. 
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in the y direction except at the walls where the isotherms flatten. The isotherms surface 

throughout the surface of the channel and ground at the lower boundary. The model has 

twenty active levels in a periodic channel of length 750 km, width 250 km, and depth 4500 

m and was integrated for 10 years (see Table 4.2).   The time evolution of the instability 
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Figure 4.20: Spin-down of a baroclinic zone. The times series of the available potential 
energy and kinetic energy per unit mass per unit volume. 

is summarized in figure 4.21 which shows surface temperature and velocity fields at time 

= 165, 180, 240, and 3600 days. The velocity field is quivered at every other grid-point, 

with the scale for the first three panels being equal and the fourth panel (3600 days) 

being multiplied by a factor of three. Initially, the along channel velocity has maxima of 

approximately 0.9 ms'1. The surface temperature is colored and contoured and shows 
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Parameter units Eddy-resolving model Parameterized model 

/o s-1 1 x 1(T4 1 x 10~4 

Bottom drag s-1 1 x 10~5 1 x 10~5 

x-domain km 750 
y-domain km 250 250 
Depth m 4500 4500 
Horizontal grid size km 10 10 
Vertical grid size m 50-400 50-400 
Vertical levels 21 21 

Initial stratification (N/f0) 21 21 
Rossby radius (NH//0) km 95 95 

Horizontal diffusivity 2   —1 m s l 0 0 
Biharmonic diffusivity 4   —1 m s 0 0 
Vertical diffusivity 2   —1 m s 0 0 

Horizontal viscosity 2   — 1 mrs L 0 0 
Biharmonic viscosity 4   —1 m s 2 x 1010 2 x 1010 

Vertical viscosity 2   —1 mrs 1 0 0 

■t*-pv m2s~x _ 15 
T(t) - linear ramp: 100 days 
Y(y) - 0, y = 0, Ly 

1, 0 < y < Ly 

Table 4.2: Parameters for the eddy-resolving and parameterized spin-down experiments. 
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the outcrops of the temperature field. The front becomes baroclinically unstable after 

approximately 165 days. By day 180 finite amplitude eddies fill the channel which are 

organized to give a cross-zone ageostrophic flow which transfers fluid from one side of 

the channel to the other. In the northern half of the channel downwelling pumps cold 

water down, while to the south the isotherms are raised. This results in a release of the 

mean potential energy stored in the sloping density surfaces. The time series of average 

available potential energy and kinetic energy is shown in figure 4.20. It shows that a 

statistically steady state is reached after 6 years of integration and the time-average was 

obtained from the last three years of model time. Averaging the three-dimensional fields 

along the front in the equilibrated state state yields a surface intensified jet with along 

front peak velocity of 0.144 ms~l in the center of the channel (see figure 4.22.b.c). The 

jet is in thermal wind balance with the temperature field shown in figure 4.22.b. The 

final state is not one of zero flow because of the stabilizing effect of the planetary PV 

gradient, ß. 
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Figure 4.21: Spin-down of a baroclinic zone. Surface temperature and velocities from 
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4.3.2    The parameterized model 

The 2D model was employed for the same problem and was initialized with the same 

meridional temperature profile. Unlike in section 4.2, here the eddies and ther param- 

eterized fluxes are only present in the transient stage of flow. However, the final state 

depends explicitly on the eddy transfers in the transient phase. 

The PV gradients in the interior are essentially the planetary vorticity gradient , ß, 

with relative vorticity contributing as the side walls are approached. To the south at all 

depths the fluid is warmer than if the isotherms were horizontal, while to the north the 

temperatures are cooler. The attendant temperature perturbations along the upper and 

lower boundaries are associated with PV gradient sheets which oppose one another and 

satisfy the necessary conditions for baroclinic instability. 

The evolution of the zonally-averaged flow closely obeys the following momentum 

balances: 

üt ~ fv* = ^Y, 

ut - fv* = ÜY, 

üt — fv*   = ' v'q' - €% 

for the upper , interior, and lower regions respectively. In the model that the primary mo- 

mentum balance is between the Coriolis and eddy flux terms with the zonal momentum 

tendency being the residual between the two. The meridional velocity is northward in the 

upper sheet enabling the Coriolis term to balance the meridional potential vorticity flux. 

In the lower sheet the zonal momentum tendency is the residual of the balance between 

the Coriolis, eddy-flux and bottom-drag terms. The meridional velocity is southward in 

this sheet. In the interior the zonal mean flow is accelerated by the residual between Cori- 

olis forces and eddy PV forcing. The residual mean circulation draws the warmer water 

in the south upward, and the colder water to the north downward, releasing available 

potential energy and spinning down the zone. This continues until the component of the 

PV gradients associated with the temperature perturbations of the sheets at the lower 
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boundary are too weak to offset ß. At this point the necessary conditions for baroclinic 

instability are no longer satisfied and further spin-down ceases due to the stabilizing 

effect of the planetary vorticity gradient. 

In the parameterized model, if the gradients of potential vorticity do not change sign; 

the momentum constraint, equation 3.9, can only be satisfied if the transfer coefficient 

takes on both signs in the flow. When this occurs, K is set to zero and the eddy driving 

term vanishes. The equilibrium state is one in which there is a sloping zone (figure 4.23.b) 

with a mean zonal jet (figure 4.23.a) in thermal wind balance. The parameterized eddies 

have released the potential energy stored in the mean flow. The peak velocity at the 

surface is 0.142 ms~l, similar to the along-zone maximum found in the eddy resolving 

calculation. However, In contrast to the eddy resolving run we have stronger flows at 

depth, as can be seen by comparing figures 4.22 and 4.23. Thus the depth integrated 

flow is overestimated in the parameterized model. 

The limiting case of section 2.8.2 is now employed in the zonal average model. Relative 

vorticity fluxes are set to zero in equation 2.15 and so equation 3.9 is automatically 

satisfied. A constant value of K is used, as in GM. The initial fields satisfy the necessary 

conditions for baroclinic instability and so the evolution of the flow proceeds as before. 

However, as the zone spins down and the gradients of the temperature perturbation on 

each boundary decrease because there is no stabilizing absolute vorticity gradient. Thus 

the potential vorticity gradients at the upper and lower boundaries take on opposite sign 

whenever boundary temperature perturbations exist. Thus the ß- stabilization present 

when the relative vorticity fluxes are included does not occur here. The final state 

of the zone is shown in figure 4.24, where the zero relative vorticity flux limit of our 

parameterization (equivalent to GM) has adiabatically flattened the isotherms until the 

zone is horizontal with no zonal flow. 
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Figure 4.24: Spin-down of a baroclinic zone. Zonal average fields from the parameterized 
model when the relative vorticity fluxes are ignored. The final-state meridional cross- 
sections of: (a) zonal mean zonal velocity (ms-1); (b) zonal mean temperature; (c) zonal 
mean surface velocity (ms'1). 
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4.4    Tropospheric eddies in the atmosphere 

The troposphere provides a very interesting test of the theoretical ideas outlined in sec- 

tions 2 and 3 because baroclinic eddies are the most important component of the atmo- 

spheric general circulation outside of the tropics [Jeffreys (1926); Starr (1948); Lorenz 

(1967)]. The net radiative budget of the Earth-atmosphere system, averaged over a year, 

results in a net surplus of incoming radiation in the tropics and a net deficit at high 

latitudes. Thus for the global climate to be in equilibrium there must be transport of 

energy from low to high latitudes, in order to balance the terrestrial radiative budget. 

Extratropical transport occurs through motions generated by the baroclinic instability 

of the mid-latitude zonal flow. But the instability also helps maintain the zonal mean 

through both the eddy heat and momentum fluxes. 

We present three experiments here with a zonally-averaged TEM aatmospheric model: 

(i) no eddy-forcing, (ii) eddy-PV-forcing, and (iii) eddy-PV-forcing in the absence of 

relative vorticity fluxes. The model solves the governing equations for an ideal gas at- 

mosphere in hydrostatic balance. The hydrodynamical core is that of the MIT ocean 

model, but we employ isomorphisms to yield a p-coordinate model applicable to the flow 

of a compressible atmosphere - see Appendix A. Potential temperature, 9, replaces T in 

the thermodynamic equation, (equation 2.64.d). Forcing is through relaxation of 6 to 

a prescribed "radiative equilibrium" temperature 9eq(p,y) on a timescale r(p,y) which 

are both functions of pressure and latitude (Held and Suarez, 1994). Thus the potential 

temperature equation takes the form: 

h+Vk8y + wk6p = --(9-0eq). 
T 

Surface drag is represented through a quadratic drag law and there is no orography. 

Five model levels are used, the lowest being at 950mb, at the top of the surface 

boundary layer, and the highest at 75 mb, in the stratosphere. The parameters used 

in these experiments are summarized in Table 4.3. The initial state is a horizontally 

stratified atmosphere as shown in figure 4.25.a which is then relaxed to the prescribed 
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Figure 4.25: Initial meridional cross-sections for the troposphere experiments; (a) po- 
tential temperature; (b) 9eq, the relaxation potential temperature; (c) r, the relaxation 
timescale in days. 

radiative-convective equilibrium profile, 9eg, on a spatially dependent timescale r, (figures 

4.25.b-c). Results are presented at equilibrium, after 1000 days of integration. The 

zonal momentum constraint is applied independently over each hemisphere to ensure 

that the eddy transfers in one hemisphere are independent of the PV gradients in the 

other hemisphere and a /?-plane geometry is used. 

The zonal-average model utilized here is ideal for coupled atmosphere-ocean experi- 

ments because it correctly captures the transfer characteristics of heat and momentum 
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by the atmospheric baroclinic eddies. Such experiments are providing dynamical insights 

into the role of each fluid in global climate. However, such experiments are compu- 

tationally expensive if the eddies of each fluid are resolved in the calculations. Our 

atmospheric experiments are all symmetrically forced about the equator. However in the 

real atmosphere there is an asymmetry between each hemisphere in the magnitude of the 

mid-latitude westerly jets and their seasonal variation. The southern hemisphere has a 

greater fraction of the surface covered by oceans and also has the only oceanic flow not 

closed off by meridional boundaries: the Antarctic circumpolar current (ACC). Thus it 

is important that the closure scheme takes into account the local properties for repre- 

senting the transfer of quantities; for example the southern hemisphere eddies should not 

be influenced by the PV gradients in the northern hemisphere or vice versa. Our scheme 

accounts for this by evaluating the iTs in equation 3.10 for each hemisphere individually 

based on the PV distribution for that hemisphere. 

The results presented here were integrated for 1000 days at which point the fields 

are in a steady state. The initial state is a horizontally stratified atmosphere as shown 

in figure 4.25.a which is then relaxed to the prescribed radiative-convective equilibrium 

profile, 9eq, on a spatially dependent timescale r (figures 4.25.b-c). 

No eddy-forcing 

The importance of the eddy-forcing of the atmospheric general circulation can be most 

readily seen by suppressing the transfer of momentum and potential temperature by 

the eddies (ie. setting v'q' = 0) and inspecting the large-scale flow which occurs in their 

absence. The resulting flow is axisymmetric consistent with the imposed radiative forcing 

and the subsynoptic mixing present in the absence of the large-scale eddies. 

The potential temperature, zonal velocity, and meridional circulation profiles are 

shown in Fig.4.26. The potential temperature has relaxed to the prescribed profile re- 

sulting in a zonal velocity consisting of two westerly jets with maxima aloft at 25° latitude. 

Zonal velocities at 950 mb (Fig.4.26.d) vary between easterlies of -0.6 ms~l and west- 
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Parameter units No eddy-forcing Eddy-forcing Limiting case 

Bottom drag m z 2.1 x 10~3 2.1 x 10~3 2.1 x 10~3 

y-domain 
Height 
Horizontal grid size 
Vertical grid size 
Vertical levels 

Mat. 
hPa 
° lat. 
hPa 

-90 to 90 
75 to 950 

2.8125 
100-300 

5 

-90 to 90 
75 to 950 

2.8125 
100-300 

5 

-90 to 90 
75 to 950 

2.8125 
100-300 

5 

Horizontal diffusivity 
Biharmonic diffusivity 
Vertical diffusivity 

2   — 1 
77TS 

4   —1 m s 
77TS   * 

0 
2 x 1015 

0 

0 
2 x 1015 

0 

0 
2 x 1015 

0 

Horizontal viscosity 
Biharmonic viscosity 
Vertical viscosity 

2   —1 
77TS   x 

ra4s_1 

2   —1 mrs L 

0 
2 x 1015 

0 

0 
2 x 1015 

0 

0 
2 x 1015 

0 

T(t) 
Y(y) 

i —1 0 1 x 106 

10 day ramp 
sin(2 x lat) 

3.4 x 105 

10 day ramp 
sin(2 x lat) 

Table 4.3: Parameters for the parameterized tropospheric eddy experiments. 
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Figure 4.26: The meridional cross-sections after 1000 days for the experiment with no 
eddy-forcing: (a) potential temperature; (b) zonal velocity; (c) residual mean overturning 
streamfunction; (d) 950 mb winds. 

erlies of 0.35 ms'1. Since the eddy flux of quasigeostrophic potential vorticity is zero, 

the residual mean circulation is exactly equal to the Eulerian mean circulation and this 
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zonally averaged meridional circulation appears as Hadley cells in each hemisphere (see 

Fig.4.26.c). Low level winds are easterly at the equator where the warm air rises and 

are westerly at low levels where the air in the Hadley cell subsides; this provides a zero 

torque on the atmosphere necessary for the steady state. In the extratropics because 

of angular momentum constraints there is no meridional motion. The equilibrium zonal 

flow and potential temperature fields is set by the nature of the restoring terms (Held 

and Hou (1980)). 

Eddy-forcing 

The approach of chapters 2 and 3 is now employed. The reference value of the transfer 

coefficient is prescribed to be Krej = 1 x 106 m2s~x with the model evaluating K at 

each latitude and pressure. Again, if the potential vorticity distribution does not satisfy 

the necessary conditions for instability then the if's are set to zero and the eddies do 

not force the mean flow. Once the midlatitude jets can support baroclinic instability 

the Ä"'s become non-zero and are linearly ramped up over a 30 day period. This crudely 

simulates the growth of the eddies whose flux will grow as they reach finite amplitude. At 

steady state the flow in both hemispheres is characterized by westerly jets with maxima 

of 35 ms~l at about 38° latitude near the tropopause. Zonal velocities at 950 mb display 

equatorial easterlies of-5.1 ms~l, midlatitude westerlies of 6.0 ms'1, and weak polar 

easterlies. The residual mean streamfunction consists of a single overturning cell in each 

hemisphere extending further poleward than the Hadley cells in the previous experiment. 

However, we stress that these cells are not the Hadley cells which appear in the Eulerian 

mean formalism; they are the cells of the transformed Eulerian mean. The potential 

temperature relaxation leads to diabatic heating in the tropics where fluid parcels rise 

and cooling at high latitudes where they subside. Thus the residual mean circulation 

approximately represents the mean motion of the air parcels. It is poleward aloft with 

return flow at low levels. In our channel ocean experiments there were no sources or 

sinks of temperature, the motion was adiabatic and hence the residual mean overturning 
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Figure 4.27: The meridional cross-sections after 1000 days for the experiment with eddy- 
forcing: (a) potential temperature; (b) zonal velocity; (c) residual mean overturning 
streamfunction; (d) 950 mb winds. 

motion vanished. Here the meridional motion does not vanish due to the diabatic forcing. 

The eddy PV flux in the meridional plane is plotted in figure 4.28.a.   At the surface 
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Figure 4.28: (a). The Eliassen-Palm flux divergence; (b) The column integrated Eliassen- 
Palm flux divergence. The eddies exert a westerly force at mid-latitudes and easterly 
forces in the tropics and toward the poles. 

there is a potential vorticity sheet due to the potential temperature perturbations along 

the boundary. There is a northward potential vorticity flux corresponding to Eliassen- 

Palm flux divergence. The compensating convergence occurs at most heights in the 

extratropical troposphere. This map of eddy PV flux agrees well both in form and 

magnitude with maps diagnosed from atmospheric analyzed fields - see, for example, 
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Schubert et al (1990) using ECMWF fields. Integrating the zonal momentum equation 

over each column gives a three-way balance between the eddy-forcing term, the meridional 

advection of zonal flow by the residual mean (v*üy), and the bottom drag. The column- 

integrated Eliassen-palm flux divergence (figure 4.28.b) is positive in midlatitudes and 

negative at the equator and poles. Thus there is a column-integrated Ey which points 

from midlatitudes to the equator south of the westerlies and from midlatitudes to the 

pole to the north; the column-integrated momentum flux is directed toward midlatitudes 

from the flanks of the westerly jets. The result is lateral momentum transfer which 

shifts the jet center northwards from 25° to 38° latitude and gives midlatitude surface 

westerlies. The meridional profiles obtained in the parameterized model compare well to 

zonal-mean cross sections of the zonal wind component for observed annual conditions 

shown in figure 7.15a in Peixoto and Oort (1992). The only striking difference between 

the observed and modeled jets is the lack of distinct cores at height in the model. This 

is likely to be due to the low vertical resolution of the model at these levels. 

Eddy-forcing: zero Reynolds stresses 

We now neglect the relative vorticity fluxes in equation 2.15 as we did for the spin-down 

of the baroclinic zone flow to reduce our scheme to that of Gent and McWilliams. After 

1000 days the equilibrium fields are characterized by westerly jets in each hemisphere 

with maxima at 25° latitude with values of 45 ms'1 (figure 4.29.b). The meridional 

profile potential temperature (figure 4.29.a) is similar to that of the no eddy-forcing 

case. The residual overturning circulation extends toward the poles with a structure 

similar to that of the eddy-forced experiment with maximum value that is 60% less. The 

meridional cross-section of the Eliassen-Palm flux divergence in the equilibrated state is 

plotted in figure 4.30.a. It shows that like the eddy-forced run there is Eliassen-Palm 

flux divergence at the lower boundary with compensating convergence at mid-heights in 

the troposphere. However the column-integrated Eliassen-palm flux divergence (figure 

4.30.b) is zero because relative vorticity fluxes have been ignored.   There is no lateral 
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Figure 4.29: The meridional profiles after 1000 days for the experiment with the limiting 
case of the eddy-forcing: (a) potential temperature; (b) zonal velocity; (c) residual mean 
overturning streamfunction; (d) 950 mb winds. 

momentum flux (Ey — 0). There is only vertical transfer of momentum, due to the 

lateral eddy buoyancy fluxes, which reduces the shear of the westerly jets and increases 
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Figure 4.30: The meridional cross-sections of; (a) the Eliassen-Palm flux divergence; (b) 
the column integrated Eliassen-Palm flux divergence. The column-integrated divergence 
is zero because relative vorticity fluxes have been ignored. There is no lateral momentum 
flux (Ey = 0) and so there is only vertical transfer of momentum, due to the lateral eddy 
buoyancy fluxes. 
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the low-level winds (see figure 4.30.d).   However, the eddy-forcing of the mean-flow is 

unable to change the position the jet cores and sharpen the midlatitude westerlies. 

It is well known that the tropospheric circulation cannot be modeled purely in terms 

of zonally symmetric processes; eddy buoyancy and momentum fluxes are crucial to the 

observed meridional structure and must be appropriately represented in order to achieve 

a realistic circulation. The three atmospheric experiments presented here clearly show 

that a realistic picture of the vertical and meridional distributions of mean zonal flow 

can only be attained when the full transfer characteristics of the eddies are represented. 

4.5    Summary 

In this chapter, the 'transformed Eulerian mean' approach for zonal mean flows, intro- 

duced in chapter 2, was implemented in a hydrostatic primitive equation model. 

The eddy PV flux was assumed to be transferred down its mean gradient with a 

transfer coefficient K (equation 3.5). The form of the ICs are chosen to ensure that an 

integral constraint on the eddy flux is satisfied, so that the eddies act only to redistribute 

momentum in the flow. Downgradient PV flux does not, however, necessarily imply that 

momentum is diffused downgradient (e.g. u'v' = —kuy). Indeed the approach can 

capture the sharpening of jets due to eddy-mean flow interaction on a /?-plane. 

The first experiment was performed for stress-driven flow in a /?-plane channel. The 

mean fields and eddy transfer characteristics of the eddy-resolving flow were compared to 

those of the same stress-driven flow in a parameterized model. The comparison shows that 

the transformed Eulerian mean approach offers advantages over existing parameterization 

schemes. The zonal mean fields of the parameterized model closely matched those of the 

eddy resolving calculation in the equilibrated state. 

The second experiment concerned the spin-down of a baroclinic zone on a /?-plane. It 

highlighted a further advantage of representing eddies through a PV flux. Because the ap- 

proach is based on gradients of PV, necessary conditions for instability are built into the 
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parameterization scheme. This leads to no PV flux by the eddies when necessary condi- 

tions are not met and stabilization of jets by the planetary PV gradient (^-stabilization). 

This feature is absent from the Gent and McWilliams approach, resulting in vanishing 

of jet currents that are not maintained by diabatic processes. 

The implementation of the scheme in an atmospheric model yielded a realistic picture 

of zonal mean flow when compared to an implementation of the GM approach. Eddy 

processes are an order one process in the atmosphere, and as the experiments show, the 

correct zonal mean physics can only be attained when the full transfer characteristics of 

the quasigeostrophic eddies are represented. 

This chapter focused on problems that displayed a marked symmetry in the direction 

of the mean flow because it offers the simplest setting in which to explore. With the 

zonal mean flows, the zonal symmetry displayed by the eddy statistics are implicit by 

design, because there is no variation in the mean in the direction of the flow. However, 

in the absence of a zonal-symmetric mean flow, nonlocal contributions of eddy enstrophy 

may result in eddy fluxes of PV that are directed up the mean PV gradient. We address 

this fact in the light of the parameterization scheme, in chapter 5. 
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Chapter 5 

Time Mean Flows 

5.1    Introduction 

In the previous chapter we studied the parameterization of quasigeostrophic eddies in 

zonal mean flows in the ocean and atmosphere. The TEM approach and the flux-gradient 

transfer closure was successful in producing mean fields and eddy statistics that compared 

well to those from eddy resolving calculations. In addition to capturing the transport 

characteristics, the TEM framework led to an increased understanding of eddy propaga- 

tion and eddy forcing of the zonal-mean flow. 

However, there is a large body of flows in the ocean for which a zonal-mean perspective 

is not appropriate. The ocean, unlike the atmosphere, is not zonally unbounded. With 

the exception of the Southern Ocean, all oceans are laterally bounded by continental land 

masses which results in a breaking of the zonal symmetry. The closed ocean basins can 

support zonal pressure gradients which lead to geostrophic meridional velocities and a 

non-conserved along-flow component of the velocity field. This meridional velocity is in 

Sverdrup balance (Sverdrup (1947)), in which the vertically integrated meridional velocity 

is proportional to the curl of the wind stress. This relation is the cornerstone of wind- 

driven ocean circulation theory, explaining the sense of rotation and the mass transport 

of major ocean gyres. Thus, the first-order oceanic circulation can be understood without 
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the need to solicit the transfer by the eddy field. This is in contrast, as section 4.4 showed, 

to the large-scale circulation of the atmosphere in which the eddy transfer is crucial to 

the observed meridional structure of the zonal mean flow. 

The existence of the interior Sverdrup solution requires, for mass balance of the 

whole ocean basin, a compensating meridional transport opposite to that in the ocean 

interior. This occurs in intense western boundary currents where the dynamical balance 

differs from that in the interior Sverdrup flow. These western boundary jets are prone to 

instability which generates eddies locally in the jet region and radiates energy into the 

Sverdrup interior, see Pedlosky (1977). In the absence of the zonally symmetric mean 

flow, regions of eddy generation are more localized and advection of eddy PV variance 

by the mean flow may give rise to a change in the nature of the eddy statistics from that 

of zonal mean flows. Thus it is more suitable for modeling general ocean flows, to apply 

a time mean rather than a spatial mean. 

In this chapter, the TEM equations set 2.60.a-e, along with the flux-gradient closure 

(equation 3.5) for the eddy PV flux, is examined and explored in the context of an 

eddy resolving three-dimensional flow. In section 5.2, a double-gyre ocean experiment is 

presented in the light of the theory laid out in chapter 2. Section 5.3 details how one 

could devise a prognostic model of time mean ocean/atmosphere flows in which the eddy 

closure is through a PV flux term. 

5.2    Flow in a double-gyre ocean 

In this section the methodology outlined in chapters 2 and 3 is explored in a double-gyre, 

eddy-resolving numerical simulation. The eddy statistics of interest are computed and 

interpreted from the point of view of the time mean TEM theory. The utility of such an 

approach is that it can be used to examine and build our intuition about the nature of 

the eddy transfer in a flows where it is not appropriate to average spatially. 
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5.2.1    Model setup 

Configuration 

The numerical model solves for the wind-driven ocean flow in a closed rectangular domain. 

The longitudinal and latitudinal extents are 2400 km and 2000 km respectively, with a 

flat bottom at depth 1000 m (see figure 5.1).  As with the channel experiments in the 

Wind 

2400 km 

Figure 5.1: A schematic diagram of the double-gyre model domain. A sinusoidal wind 
stress drives subtropical and subpolar gyres to the south and north of the zero wind 
stress curl line. 

chapter 4, the initial stratification is constant. The vertical grid spacing was 100 m in 

the vertical. Friction is present through a bottom drag in the lower layer, Laplacian and 

biharmonic viscosity is used. Biharmonic diffusivity is used to suppress numerical noise 
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on the grid-scale. To exclude a thermally driven circulation, no thermodynamic forcing 

(G = 0) is used in the experiment. Static instability is released by convective adjustment. 

The numerical experiment is summarized in Table 5.1. The equation of state is a linear 

function of temperature only, with salinity effects neglected. The applied wind-stress is 

applied in the upper level of the model and has the form: 

T = -r0cosi — j (5.1) 

where Ly is the meridional extent of the basin. This produces a double-gyre flow pattern 

with a northern cyclonic subpolar gyre, and a southern subtropical gyre of anticyclonic 

rotation. 

Length scales and jet penetration 

Extensive studies of homogeneous ocean models (see Pedlosky (1996) for a comprehensive 

review) identify several length scales of the western boundary current that are of interest 

in the baroclinic ocean flow at hand. The dynamics of the boundary current can be 

either frictional or inertial. If the dynamics are inertial (Fofonoff (1954), Charney (1955), 

Morgan (1956)), the boundary layer scales as: 

(u\1'2 

where U is the scale of the zonal velocity. Using Sverdrup balance to give an estimate 

for U, equation 5.2 can be rewritten as; 

where r0 is the maximum of the wind-stress, ß is the variation of the Coriolis parameter, 

H is the depth of the wind-driven flow, and Ly is the latitudinal extent. 

For linear or very weakly non-linear flow, the Sverdrup solution is closed by frictional 

dynamics. Modeling the oceanic potential vorticity dissipation as a large-scale diffusive 

process, Munk (1950) showed that the vorticity balance in the western boundary consists 
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Parameter units value 

/o s-1 1 x IO-4 

ß m"ls~l 1 x KT11 

Wind-stress, r Pa 0.1 
Bottom drag s-1 1 x 1(T7 

x-domain km 2400 
y-domain km 2000 
Depth m 1000 
Horizontal grid size km 20 
Vertical grid size m 100 
Vertical levels 10 

Initial stratification (N/f0) 45 
Rossby radius (NH//0) km 45 

Horizontal diffusivity 2 —i m*s L 0 
Biharmonic diffusivity 4 —1 m s 1.46 x 1010 

Vertical diffusivity 2 —i mrs  l 0 

Horizontal viscosity 2—1 mrs i 50 
Biharmonic viscosity 4 —1 rrvs l 1.46 x 1010 

Vertical viscosity 2 —1 mrs l 1 x IO-3 

6s km 10.0 
SM km 17.1 
6A km 17.1 
Si km 39.8 
&I/ sM 2.33 

Table 5.1: Parameters for the eddy-resolving double-gyre experiment. 
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of Fickian diffusion of vorticity balancing the advection of planetary vorticity. Under this 

balance, the zonal scale of the boundary layer is given by 

(A   \1/3 

where AH is the Fickian "eddy viscosity". (Note that Munk represented the momentum 

flux by the eddies as a diffusive process.) If the dissipation mechanism is represented by 

biharmonic viscosity then the boundary layer scale is 

where A4 is the biharmonic "eddy viscosity". When bottom friction is present vortic- 

ity can be dissipated without the need for lateral diffusion (Stommel (1948)) and the 

boundary layer then scales as 

ös = |, (5.6) 

where e is the bottom drag coefficient. This is Stommel's (1948) solution for closing the 

Sverdrup interior balance. 

The relative size of 5/ to 5M, #4, and 5S is the measure of the how inertial the flow 

is in the homogeneous ocean models (see, for example, Veronis (1966), Holland and Lin 

(1975) Cessi et al. (1990)). For baroclinic flows, instabilities give rise to quasigeostrophic 

eddies and their associated Reynolds stresses become the prevailing dissipative mecha- 

nism. Thus the relevance of the frictional boundary scales for a stratified ocean model 

is somewhat unclear. However numerical simulations in two-layer quasigeostrophic flows 

(Holland (1978), Holland and Rhines (1980)) show that when the inertial boundary scale 

is larger than that of the frictional scale the flow displays turbulent characteristics and 

a vigorous eddy field. 

For single gyre flows, the western boundary must dissipate the vorticity imparted 

by the wind stress to achieve a steady state. Neglect of lateral friction (High Reynolds 

number) leads to a circulation in which the interior velocities must be large in order for 
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bottom friction to achieve the required vorticity dissipation. The resultant flow is the 

Fofonoff (1954) free basin mode. 

In contrast, for a double-gyre model in which the forcing is symmetric about the mid- 

latitude, the net vorticity input into the gyre is zero. However, as Marshall (1984) shows 

for a barotropic double gyre the flow does not approach a double Fofonoff mode, even 

though the flow is highly nonlinear. This is because the interior jet which separates each 

gyre becomes dynamically unstable and results in lateral transfer of vorticity by eddies 

that repeatedly form over most of the basin. For these double-gyre flows, the boundary 

currents merely play the role of closing the mass flux budget. 

The matter of the extent of the penetration of the jet and its meandering streamlines 

is a much studied problem in its own right. For example, Holland and Schmitz (1985), 

Greatbach (1988), Marshall and Marshall (1992) have all considered the problem of jet 

penetration scale in numerical ocean models. Marshall and Marshall (1992) show the 

sensitivity of jet penetration to the choice of boundary conditions, and conclude that 

free-slip conditions yield PV distributions that are more favorable to deeper penetration 

into the basin interior. For this reason, the experiment is run with free slip boundary 

conditions for velocity. As Table 5.1 indicates, the ratio Sj/SM is 2.33 (>1). Consequently, 

we expect a jet which penetrates far into the interior, which spawns an energetic eddy 

field. 

5.2.2    Flow evolution and equilibration 

The time development of the surface temperature and velocity fields is shown in figure 

5.2. After 6 months the subtropical and subpolar gyres are separated by an inertial 

jet that penetrates to 2000 km (83% of the longitudinal extent) which is marked by the 

tight temperature contours at y = 1000 km. Recirculation gyres are present toward the 

eastward end of the jet. After 1 year, meanders in the jet are visible, with the jet curling 

tight at its eastern most extent. Eddies have pinched off, and are visible to the east of 

the jet and in the subtropical gyre. The subsequent snapshots (each presented here in 
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Figure 5.2: Instantaneous surface temperature and velocity fields for the double-gyre 
experiment at (a) 0.5 years, (b) 1 year, (c) 3 years, (d) 6 years, (e) 10 years, (f) 15 years, 
(g) 18 years, (h) 25 years. The temperature field is contoured with warmer water denoted 
by lighter shading. Velocities are denoted by arrows. 
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Figure 5.2 [Continued) 
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multiples of 1 year) show high variability in the jet separation point from the western 

boundary (e.g. compare years 1 and 3), jet penetration (c.f. years 6 and 8) , and the 

number of eddies present in the gyres (c.f. years 6 and 25). At some times, the jet is 

strongly marked (6 years), at others is less pronounced (18 years), occasionally it will 

split into multiple jets (15 years), and at other times filamentation associated with the 

cascade of vorticity is evident (25 years). This marked variability is evident in the time 

0.05- 

0.04- 

0.025 - 

0.015 

0.01 - 

Figure 5.3: The times series of the available potential energy (heavy line) and kinetic 
energy (thin line) per unit mass per unit volume. 

series of average mean kinetic energy presented in figure 5.3. The energy is characterized 

by variations from short time scales to the inter-annual. This variability and its gen- 

eration mechanism is an interesting problem in its own right [see, for example Primeau 
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(1998) who shows that bifurcation theory is useful in explaining the time mean and low 

frequency variability of simple double-gyre models] but will not be pursued here. The 

kinetic energy is a factor of 5 times larger than the available potential energy in the run 

presented here. This suggests that the primary eddy generation mechanism is barotropic 

instability resulting from the horizontal shears in the flow. [Another experiment that 

is not reported in the thesis had the kinetic energy and available potential energy with 

comparable values, and much more of a mixture of both barotropic and baroclinic eddy 

generation. The results differ only quantitatively from those that will be presented here. 

Indeed, the physics of the instability and its generation mechanism appears in equation 

3.5 through the structure and size of the transfer coefficients K. Because the principal 

eddy generation mechanism is not baroclinic instability does not invalidate the flux- 

gradient closure relationship (equation 3.5.)] The calculation is integrated for 30 years. 

2000 

1500 

g 
5*1000 

500 

500 1000 1500 
x (km) 

2000 

Figure 5.4: Time mean surface velocity and temperature fields 

Figure 5.4 presents the time mean temperature and surface velocities, averaged over the 
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last 12 years (years 18 - 30) of the model integration. 

The time mean velocities in the western boundary current reach a maxima of 64 

cms'1, with typical velocities in the eastward flowing, interior jet of 24 cms~l. Velocities 

in the gyre interior are on the order of 2 cms-1, consistent with Sverdrup theory which 

predicts a value of 1.57 cms'1 with the parameters listed in Table 5.1. The maximum 

surface temperature in the subtropical gyre is 12.5 °C, while the minimum in the subpolar 

gyre is 12.2 °C. Thus meridional temperature gradients are smaller than observed in the 

real ocean. 

The Eulerian mean barotropic streamfunction is shown in figure 5.5.a. The circulation 

is comprised of the subtropical and subpolar gyres separated by an eastward flowing jet 

at midlatitudes with Sverdrup return flow in the interior. The depth-integrated mass 

transport of each gyre is 40 Sv. Because the forcing is symmetric about the middle- 

latitude, the flow field should be antisymmetric in each basin. However, because of the 

average is taken over a finite time (and therefore a finite number of eddies), the ip field 

has minor asymmetries. Figure 5.5.b depicts the PV distribution in the upper level and 

hence contains the contribution from the PV sheet. One feature is evident in figures 

5.4 and 5.5.b that is not given by Sverdrup or western boundary current theories. It 

appears in the northeastern corner of the model domain and I shall refer to it as the 

"northeastern feature". It arises from the C-grid discretization of the model. The wind 

stress imparted on the fluid is independent of longitude. Sverdrup balance predicts that 

the shear of the vertical velocity (and hence the w itself) is therefore also independent 

of x. However, at the eastern boundary, the C-grid discretization gives a w that differs 

from that in the basin interior. As a result, the advective balances for temperature are 

different next to the eastern wall than in the interior, which manifest themselves as the 

"northeastern feature". As we shall see, this unfortunate structure, which is a purely 

numerically generated feature, will not impact the diagnostics and conclusions of the 

eddy transfer statistics. 

In figure 5.6, the PV distribution for each level in the model is plotted. The effect 
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of the temperature gradients at the surface manifest themselves in the PV sheet in the 

upper level. The mean PV gradients at this level are typically a factor of 10 larger than 

the planetary PV gradient, ß. In the eddy intense region this factor is 30. At subsequent 

levels the mean PV gradients are much weaker than in the sheet and are typically an 

order of magnitude smaller than ß. The associated eddy PV fluxes at depth are at least 

an order of magnitude smaller than in the upper level. There is no PV sheet in the 

bottom level because of the absence of a bottom Ekman layer in the three-dimensional 

flow. The Sverdrup solution gives a non-zero interior flow (in contrast to the channel 

experiments), and this dominates the flow in the bottom level. The vertical velocities 

in the interior of the gyres, arising through Ekman pumping and suction, are closed by 

opposing vertical flow in the western boundary currents where the Sverdrup vorticity 

balance no longer holds. 

We go on now to study the eddy statistics choosing to focus on the upper level of the 

model where there are significant instantaneous and mean PV gradients and eddy fluxes 

ofPV. 
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Figure 5.5: Fields of; (a) The time mean barotropic streamfunction ip. The range plotted 
is (-40 x 106 < V> < 40 x 106). The contour interval is 4 x 106. Units are m3s-1. (b) The 
time mean surface (depth = -50m) PVq. The range plotted is (—3xl0~5 < q < 2xl0-4). 
The contour interval is 1 x 10-5. Units are s~2. 
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Figure 5.6: Plots of the mean PV, q, at each level of the model. The range plotted is 
(-3 x 10-5 < q < 2 x 1(T4). The contour interval is 1 x 1(T5. Units are s~2. The PV 
sheet is evident in the upper level of the model. Weak PV gradients are present at every 
other level in the model. PV gradients in these levels are typically an order of magnitude 
smaller than the planetary vorticity gradient ß. 
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5.2.3    Eddy transfer statistics 

The parameters that determine the flow, listed in Table 5.1, give surface eddy kinetic 

energy levels (figure 5.7) that are comparable in size to those observed in the upper ocean 

(see, for example, Wyrtki et al. (1976), Schmitz (1978), Richardson (1983)). The eddy 
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1000 1500 
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2000 

Figure 5.7: Time mean surface eddy kinetic energy field. Units are cmrs 2 „-2 

kinetic energy penetrates into the basin interior with a maximum in intensity along the 

mean latitude of the jet. Figure 5.7 suggests the presence of a vigorous eddy field over 

much of the basin. 

If our model had parameterized the eddies through the quasigeostrophic PV flux, the 

prognostic velocity variable would be that of the "residual mean circulation". Thus any 

comparison between an eddy resolving model and a parameterized simulation demands 

that we diagnose the residual mean circulation from the eddy resolving flow. Therefore, 

the residual mean circulation is diagnosed here. 
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Figure 5.8: Time mean field of the barotropic residual mean streamfunction The range 
plotted is (-40 x 106 < ^ < 40 x 106). The contour interval is 4 x 106. Units are m3s~l. 

The residual mean circulation defined by equation 2.31 can be written in component 

form: 

u    =   u + 

v — 

d_(l /— 
dy 

w w + 
' d_ (u'T'\      d fv'T's 

d  (v'T's 

(5.7) 
dx \TZ )     dy\Tz 

Algebraically simpler expressions for It* and U* can be found using the definitions of 

the PV fluxes (equations 2.14 and 2.15). The horizontal components are re-expressed 

thus: 

1 
u  = u — 

h 
W V-!:K)-!-p) dy 
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-*  -   1 
V    = V 

0 /( ^, + |:(u'2) + l;(MV) (5.8) 
dx \    I     dy 

The depth-integrated residual mean streamfunction is plotted in figure 5.8. It looks very 

similar to the Eulerian mean streamfunction tp shown in figure 5.5.a. However, there are 

0(R0) differences in the eddy intense region where the PV and Reynolds stress terms in 

equation 5.8 are important. The surface PV flux, (u'q1), in the upper level (and therefore 

in the PV sheet) is plotted in figure 5.9. The figure also displays how the PV flux is 

oriented with respect to the mean gradients of PV. Areas shaded gray show regions of 

(uy) -Vq <0. Also shown are the contours of q. The flux is large and down the mean 

PV gradient in the vicinity of the western wall where jet separation occurs and eddies are 

produced. West of re = 500km, dissipative effects are important, because of the enhanced 

gradients of eddy enstrophy, and act to drive the PV flux downgradient. In the region 

(0 < x < 1000km, 500km < y < 1500km), the PV flux shows a cyclonic swirl which 

a strong component of the flux directed up the q gradient. This is because the eddy 

activity in this region is dominated by advection where the eddies spatially decay. 

Regions of large counter-gradient fluxes of eddy PV suggest that a flux-gradient pa- 

rameterization of the form of equation 3.5 is not appropriate for time mean flows. How- 

ever, as we shall see in the next section, the decomposition of eddy fluxes into components 

that are associated with advective and dissipative effects, provides a way forward in which 

a relationship of the form of equation 3.5 may be justified. 
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Figure 5.9: The eddy PV flux (uV) superposed with the mean PV field q. Every other 
vector is shown. The sign ((uV) • Vg) is shaded. Gray indicates regions of downgradient 
PV transfer with (u'q1) • Vq < 0. White indicates (u'q') • V<? > 0 or upgradient PV 
transfer. 
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5.2.4    Decomposition of the eddy flux of PV 

Figure 5.9 with its regions of upgradient PV transport highlights the difference between 

the time mean flow and the zonal mean flows of chapter 4. The zonal mean meridional 

PV flux is naturally divergent and directed down the mean PV gradient. However, the 

time mean PV flux can have a large nondivergent (rotational) component that has no 

dynamical effect on the mean PV. This is because a flux of a quantity will only change 

the mean state if the flux is divergent. 

Hoskins et al. (1983) studying atmospheric storm tracks, recognized this and removed 

the nondivergent portion of the eddy flux making heuristic assumptions about the size 

and shape of the eddies. First, they assumed the relative length scales of the eddies were 

such that (dy > dx). Secondly, the specified the relative size of the different momentum 

fluxes to be v'2 and v'2 » «V. The resultant eddy flux that they obtained was an 

extension of the Eliassen-Palm flux for zonal flows which they used as a diagnostic of 

the feedback of the eddies on the mean flow. The assumptions employed by Hoskins et 

al. are not appropriate for the flows considered in this chapter. An alternative approach 

was offered by Holopainen (1984) in which he defined an eddy time mean force in the 

atmosphere to be given by -k x (n'q')Div. He estimates (u'q')Div by solving the Poisson 

equation for its potential function. 

The decomposition of the eddy PV flux into divergent and rotational parts is a 

problematic feature of time mean eddy statistics.  A requisite for the method used by 

Holopainen (1984) is that the potential function of (u'q')Div be specified at the bound- 

aries. This is a difficult task and as a result this approach has proved to be of little use in 

analyses of ocean eddies. Therefore, alternative techniques have been used to determine 

the flux components using analytical methods. 

Marshall and Shutts (1981) and Illari and Marshall (1983) demonstrate that if the 

time mean flow is almost conservative (ü- Vq TU 0), there is a purely rotational component 

of u'q' associated with mean advection of eddy PV variance or enstrophy. This rotational 
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flux is defined thus 

where 

(u'q')Rot = k x V (Ac), 

#      Vq ■ V^ 
A 

dq |V?|2   ' 

and the eddy enstrophy, e, is given by 

e = -q*. 

(5.9) 

(5.10) 

(5.11) 

If u • Vq = 0 holds, then J(ip, q) = 0, and ip = F(q) where F is a functional relationship 
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Figure 5.10:   Time mean surface field of eddy enstrophy e.   The contour interval is 
2.5 x 10-10 s~2. 

between ip and q.  F is usually determined empirically. Thus we can use the following 

relationship to calculate dip/dq: 

(5.12) 
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The time mean eddy enstrophy is plotted in figure 5.10 for the upper level of the model. 

It is similar to the map of eddy kinetic energy with contours straddling the jet to the north 

and south. It has a maximum at the western boundary associated with the vacillation 

of the separation point of the jet from the western wall. The enstrophy penetrates (at 

this contour interval) to half of the zonal basin extent and almost the whole extent in 

latitude. Also present in the northeastern contour is a variance contour associated with 

the "northeastern feature" given by the C-grid. Note that the enstrophy connected with 

the northeastern feature is detached from the enstrophy contours associated with the 

eddying jet. Thus the presence of the northeastern feature does not influence the results 

in the jet region. 

The sign of Vq-Vip, (and to the extent that r/> and q are parallel, the sign of chjj/dq), 

is calculated and plotted in figure 5.11.  The if; contours are wavy in the region where 
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Figure 5.11: Time mean surface field of the sign (Vq-Viß) and Eulerian mean barotropic 
streamfunction. Regions shaded in gray indicate Vg • V^ < 0. Regions shaded white 
have Vq ■ Vtp > 0. 
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Vq-Vip < 0. This is because of the presence of standing waves. The direction V<jf is that 

in which Rossby waves propagate their phase, while the mean flow is in the direction of 

Vt/>. If these gradients are opposed then standing waves can result, producing waviness 

in the ip contours. 
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x (km) 
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Figure 5.12: Plot of ü • Wq. Gray areas indicate regions where the time mean flow is 
nearly conservative, v, ■ V<? « 0. The close conservation of q in the jet region enables 
rationalization of the eddy PV flux components that are associated with advective and 
dissipative effects. The eddy flux component balancing mean flow advection is non- 
divergent and does not force the mean flow. The eddy flux component that contains all 
of the divergent flux is directed down the mean q gradient and plays the role of balancing 
the dissipation of eddy enstrophy White areas indicate regions of non-conservation of q 
where the mean flow is driven across q contours by the wind stress curl. 

The result of the definition of the rotational component of the PV flux given by 

equation 5.9, is that this flux will balance the mean advection of eddy enstrophy: 

ü-Ve = -(uV)Ärf.V?. (5.13) 

Further, if triple correlation terms are small, the residual flux between the full PV flux 
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and the rotational component (termed here (u'q')Div), 

(u'q')Div = (uY) - (u'q')RoV (5.14) 

will balance sources and sinks of eddy enstrophy, X'Q'
: 

(u'9')0,-„-Vg = xV- (5.15) 

The sign of x'q' determines whether the divergent flux is directed up or down the mean 

PV gradient.   If the non-conservative term is a dissipation of eddy enstrophy via the 

enstrophy cascade, then X'Q' < 0, and the divergent flux will point down the q gradient. 

In actuality, the divergent flux defined by equation 5.14 need not be purely divergent, 

if (Wq')Rot is not purely rotational; for example it may contain vector components that 

are uniform or translational (Bluestein (1993)). However, Plumb (1986) shows that 

the eddy PV flux body force associated with the residual PV flux (in our notation: 

FDW = -k x (u.'q')Div) can be related to a generalized Eliassen-Palm flux MT. We now 

define a unit vector which is directed along the mean PV (and streamfunction) gradient, 

Vq 
n 

and one which is oriented along the mean PV contours, 

(5.16) 

s = k x n, (5.17) 

see figure 5.13. Using equation 5.13 to evaluate (u'q')Rot oriented in the s-direction, the 

eddy force in the direction of the flow can be written as 

1 
FDiv ■ s   =   (uy) • n + — u • Ve 

Vq 

=   V-MT. (5.18) 

Hence, MT is an effective flux of momentum, measured in the direction of the flow (for 

small-amplitude disturbances of a slowly varying, and nearly conservative mean flow). 
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The momentum flux MT is independent of dip/dq and can be related to a wave activity 

flux: 

|(_|)+V.MT=I>. (5.19) 

This is a time mean wave activity relation, that is identical to equation 2.67 for zonal 

mean flows. Hence, MT can be interpreted as a measure of eddy activity in the along 

flow direction. 

Figure 5.13: The unit vectors n and s. n = S is directed along the mean PV gradient, 
s = k x n is directed in the upstream direction. Adapted from Plumb (1986). 

In figure 5.14, the rotational flux in the upper level of the model, (u'q')Rot is super- 

posed on the contours of eddy enstrophy. It is mostly directed up the mean gradient of 

q because it plays the role of balancing the mean flow advection of enstrophy in the jet 

region where u- Ve < 0. Figure 5.17.b plots this flux in the subdomain 0 < x < 1000km, 

500km < y < 1500km, (hereafter subdomain A), which highlights how the rotational 

flux follows the enstrophy contours. 

Figure 5.15 plots the corresponding upper level component of the divergent flux 

(Wq')Div.   It is also plotted for in figure 5.17.C for subdomain A. The strong cyclonic 

swirl evident in the full PV flux is no longer present. It has been largely accounted for by 
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Figure 5.14: The eddy PV flux (u'q')Rot superposed with the contours of eddy enstrophy, 
e. Every other vector is shown. 

the rotational flux. Regions of enstrophy sources and sinks can be readily identified ac- 

cording to whether the divergent flux is directed up or down the mean PV gradient. Over 

most of the basin the component of (u'q')Div is directed along the gradient is vanishingly 

small. The exception to this is in the eddy intense jet region where strong downgradient 

fluxes exist because it is a region of intense enstrophy and a weakened potential vorticity 

gradients. Also shown is the sign of (n'q')Div ■ Vq with gray shading indicating negative 
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Figure 5.15: The eddy PV flux (n'q')Rot superposed with the contours of eddy enstrophy, 
e. Every other vector is shown. The sign ((Wq')Div ■ Vq) is shaded. Gray indicates 
regions of (u'q')Div • Vg < 0. White indicates (u'q')Div • Vq > 0. 

values and downgradient transfer of q by the divergent flux {u'q')Div. Note that in fig- 

ure 5.15, almost all regions of significant (u.'q')Div correspond to regions of downgradient 

transfer of PV. 

There are however, regions where (u'q')Div • Vg > 0 as indicated by the white shading. 

In these areas, PV transfer is directed up the mean PV gradient. This occurs at latitudes 
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where the mean flow is meridional and turning westward in the gyres. It arises because 

dif^/dq > 0 at these latitudes as figure 5.11 shows. However, it is at this point in the flow 

that the validity of equation 5.12 is in doubt, because J(tß,q) ^ 0 (see figure 5.12). This 

is because the mean flow is being driven across q contours by the curl of the wind stress. 

There is a region of strong divergent flux in the southwestern corner of the basin. This 

is due to large values of the analytically determined rotational flux which arises for two 

reasons. Firstly, w • q « 0 is not valid in this region (figure 5.12) because of the forcing 

by the wind stress curl, as mentioned above. Secondly, in this region, the value of chf/dq 

is relatively large due to weakened meridional gradients of mean PV (figure 5.5). Figure 

5.15 also shows a region just to the east of the jet around x = 500 km where the divergent 

flux is upgradient. However, inspection of figure 5.17 shows that in this region, the along 

gradient component of (u'q')Div is vanishingly small when compared to the cross stream 

flux in the eddy intense regions west of x = 500km.    (u'q') • Vq and (u'q')Div ■ Vq are 
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Figure 5.16: (a) The sign ((u'q') ■ Vg). (b) The sign ((u'q')Div • Vq). Areas shaded 
in gray are regions where the quantity is negative indicating downgradient PV transfer. 
Subdomain A is indicated. Within the subdomain, white areas correspond to to regions of 
upgradient PV transfer. However, as figure 5.17 shows, the white areas in (b) correspond 
to regions where the upgradient flux in vanishingly small and thus have little effect on 
the mean flow. 
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Figure 5.17: The upper level eddy fluxes; (a) (u'q1) superposed on the sign {{u'q') ■ Vq). 
(b) (nV)iw and sign {{u'q')Div ■ Vq). (c) {u'q')Div and sign {{u'q')Div ■ Vq). Shading as 
before. 

redrawn in figures 5.16.a and b. We see that in subdomain A, the region of intense eddy 

driving of the mean flow, the area of upgradient (u'q1) transfer is smaller than in the full 
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PV flux, and from figure 5.17 the along gradient component of the flux is negligible. 

Figure 5.18 plots a scatter diagram of iß against q based on the points in subdomain 

A. The figure shows a strong q - iß relationship, particularly at midlatitudes. Thus we 

have confidence in the size and structure of the analytically calculated {u'q')Rot field in 

the eddy intense region associated with the jet. 
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Figure 5.18:  Scatter diagram for mean PV q against mean streamfunction iß for the 
region 0 < x < lOOOfcm, 500 < y < 1500km. 

In summary, this section has shown that the conceptual framework of downgradient 

PV mixing is still appropriate for the component of the eddy PV flux that forces the 

mean flow. This was determined through consideration of the dynamical balances in the 

eddy enstrophy equation. Assuming close conservation of q enables rationalization of 

the eddy PV flux. A rotational, non-divergent eddy flux component is associated with 

the mean flow advection of eddy enstrophy. This component, associated with advective 

effects, does not force the mean flow because it is non-divergent. The residual, (u'q')Div = 
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(u'q') — {u'q')RoV contains all of the divergent flux and is directed down the mean PV 

gradient due to enstrophy dissipation. 

5.3    Representation of the time mean eddy-forcing 

In the previous section, we found that in the regions of significant eddy forcing, the 

divergent component of the eddy flux (u'q')Div was directed down the mean gradient 

of q.   Hence a parameterization of downgradient PV transfer in the form of equation 

3.5 seems to be justified if (u'q')Div is represented instead of the full flux (u'q'). This 

is not surprising given the diagnostic studies of Hoskins et al. (1983) and Holopainen 

(1984) referred to in the previous section. Indeed, working within the context of a 

barotropic quasigeostrophic model, Marshall (1984) made the same proposal. However, 

our governing equations are not quasigeostrophic, only the eddy terms are. If we are to 

invoke a parameterization of the form 

W)Div = -K ■ V5 (5.20) 

then the full PV flux term that appears in equation 2.55.a must be replaced by a term 

that depends only on the divergent PV flux. Thus we proceed by removing the rotational 

(nondivergent) component of the PV flux from Feddies — —k x (uV)- 

First, we note that: 

kx(uYW   =   kxkxV(Ae) 

=   -V(Ae). (5.21) 

Now, using equation 5.14 for the divergent component of the flux, 

-kxJ^)Div   =   -k x [ÜV - (Sv)fiJ 

=   -k x u'q' + k x (u'q1) Rot 

=   -k x uV - V (Ae), (5.22) 
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so we have 

-k x u'q' = -k x (u'q')Div + V (Ae). (5.23) 

Using equation 5.23 to substitute for the body force term in equation 2.55.a we obtain: 

—£- + /kxü*+ - Vp = F-kx (ÜY)0ii; + V (Ae). (5.24) 
JJt po 

It readily follows that, 

£>*H* 
+ /k x Ü* - V (Ae) + -Vp = F - k x (u'q')Div. (5.25) 

Dt K    '     po 

Absorbing V (Ae) into the Coriolis term yields 

+ /kx ü* - hs. x V (Ae) 
Dt 

We now choose to redefine the residual mean velocity thus: 

+ -Vp = F - k x (u'q')Div. (5.26) 
Po 

u** = ü* - -k x V (Ae). (5.27) 

So we have 
£>*u*      ..      __      1 
^   +/kxü-+-Vp = F-kx(uVk (5-28) 

The rotational component of the PV flux has been absorbed into the Coriolis term. The 

result is that a nondivergent eddy force term appears that is dependent only in the 

divergent component of the eddy PV flux. As equation 5.28 stands the velocities that 

appear are a mixture of the residual mean velocities ü* and the velocity II**. This is 

useful if equation 5.28 were to be used diagnostically. However, if we wish to solve for 

the mean flow in a predictive model in which the eddy fluxes are parameterized, then to 

utilize equation 5.28 demands that we diagnose the rotational component of the PV flux 

in order to evaluate u**. Thus the obvious way forward is to form a momentum equation 

in which the prognostic velocity is u**. This can be achieved without much difficulty 

through manipulation of the substantial derivative and systematic scaling as carried out 

in chapter 2. 
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Transforming the advective velocity in the substantial derivative from u* to u** yields: 

Z)**u~** 1 —   D** (\ \ 
+ /kxü** + -Vp   =   F-kx(uV)Dit, + —(^xVlAe)1 

Dt        J Po uw      Dt \f 

-    (jk x V (Ae) J -V ü** - jk x V (Ae)   . (5.29) 

For algebraic simplicity we write 

-kxV(Ae) = -(uY)Äot, (5.30) 

with which the right hand side of equation 5.29 can be rewritten as 

£)** /l——    \      /l- 
RHS = F - k x (n'q')Div + W [jW)Rot) ~ (jWWJ ■ Vü*. (5.31) 

The zonal component of equation 5.31 is given by 

RHS = r + (v'q')Div - u*dx \j{u>q>)Rotj - {j(u'q>)Rotj dxv*. (5.32) 

We now scale each term the the above equation, as in chapter 2: 

FX    Wim»   ^MjWW)    (Ä)4ü* 

4- 4- 4/  '    " 4- 

r L fL2 fL2 

F U_ 
fU fL (0 (£)■ 

The last two terms are 0(R2
0). It is consistent with the scaling in chapter 2 to neglect 

these terms since the Rossby number Ro -C 1. When the same scaling procedure is 

applied to the meridional component of equation 5.31, we find that equation 5.29 takes 

the simple form: 

£>**ü**      .,      __      1 
+ /kxif+ —Vp = F - k x (u'q')Div. (5.33) 

Dt po 
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Replacing the ü* by ü** in the mean temperature equation (equation 2.55.a.b) and per- 

forming the scaling yields: 
D**T     ^ 

Thus, the eddy term appears as a body force through the divergent component of the eddy 

flux of PV. This flux, as discussed in the beginning of this section, can be parameterized 

through a flux-gradient relationship in the form of equation 5.20. Thus the closure 

approach of chapter 3 is appropriate if viewed from the redefined TEM framework in 

which the eddy terms are represented by one term: the divergent eddy flux of PV. 

The procedure would be to diagnose the quasigeostrophic potential vorticity and then 

determine the transfer coefficients that satisfy the appropriate momentum constraint for 

time mean flows. With knowledge of the parameterized PV flux, the governing equations 

(5.33 and 5.34) are closed, enabling determination of the mean velocity and temperature 

fields. Forcing by the divergent eddy flux of PV yields the mean velocity field u**, that 

naturally incorporates the momentum and temperature transferring properties of the 

quasigeostrophic eddy field. 

There is however, a difficulty associated with equations 5.33 and 5.34 that must be 

noted. This difficulty is associated with the fact that the normal component of u** does 

not necessarily vanish at the vertical boundaries. If the boundary conditions on the 

velocity are those of free slip, then 1* ^ 0 on boundaries that run north-south, and 

v* ^ 0 on east-west boundaries, as discussed in section 2.6. The residual mean velocity 

does vanish, however, for no-slip boundary conditions. However, there is no a-priori 

reason why the term JkxV (Ae) in equation 5.27 is zero at the boundaries. In fact, as 

figure 5.10 shows, the eddy enstrophy and its gradients were not zero along the western 

boundary and as a result u** does not vanish there. This problematic feature must be 

addressed before implementation of the approach can proceed. 
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5.4    Summary 

The theoretical arguments and the eddy PV closure was tested using the three-dimensional, 

eddy-resolving, HPE model for a double-gyre ocean experiment. The eddy transfer char- 

acteristics of the flow were examined in the light of the time mean dynamical framework 

and subsequent closure for the eddy PV flux. 

In the PV sheet, embedded in the upper level of the model, the time mean PV flux 

has a swirl-like structure, resulting in eddy fluxes of PV that were directed up as, well 

as down, the mean PV gradient. 

However, the mean PV flux was shown to have a large nondivergent (rotational) 

component that had no dynamical effect in forcing the mean flow. The most problem- 

atic aspect of the chapter was in evaluating the divergent eddy PV fluxes. With the 

complicated boundary conditions, using a Poisson equation to determine the rotational 

flux would have been difficult indeed. Instead, the rotational and divergent fluxes were 

determined analytically using ideas advocated by Marshall and Shutts (1981). The di- 

vergent flux referred to in the chapter is not guaranteed to be purely divergent, since 

the method only gives the residual between the full PV flux and the rotational (non- 

divergent) component. It was assumed that mean PV contours were nearly parallel to 

mean streamlines, with dip/dq and eddy enstrophy used to evaluate the rotational, and 

therefore, the divergent eddy PV flux. 

The divergent eddy PV flux in the eddy intense jet region was found to be almost 

universally directed down the mean PV gradient. Much of the swirl structure present in 

the full PV flux was accounted for by the rotational component of the flux. Regions did 

exist where this flux was oriented upgradient. However, the along gradient component 

of this flux was vanishingly small when compared to the downgradient transfer regions. 

This fact led us to propose couching the eddy flux term as the divergent eddy flux 

of PV, since a downgradient PV closure scheme seems justified for this flux component. 

The resultant governing equations are stated in equations 5.33 and 5.34. 
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Chapter 6 

Summary and Conclusions 

6.1    Summary of the thesis 

In this thesis we have sought to improve the parametric representation of the transfer 

properties, and forcing of the mean flow by eddies, in non-eddy-resolving ocean models. 

The advantage of the approach used here over conventional approaches, is that it 

avoids separating the heat and momentum (vorticity) transporting properties of the 

eddies and thus leads to a considerable simplification of the parameterization problem. 

It is also a more physically based approach than those currently used in ocean modeling. 

This thesis presents the method of parameterization and explores the scheme in light of 

resolved and parameterized eddy physics. 

I would like to emphasize that the thesis does not proffer a recipe for eddy represen- 

tation that will always work - the problem at its deepest level does not have a solution. 

Rather, a method is offered, that in one limit correctly captures quasigeostrophic eddy 

temperature and momentum transfer, and in another limit reduces to that of Gent and 

McWilliams (1990), which neglects momentum transfer. 

The dynamical framework used is that of the "transformed Eulerian mean", first 

introduced by Andrews and Mclntyre (1976). This gives a more complete picture of the 

propagation of the eddies, their transport, and their effects on the mean flow. 
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Unfortunately, there is considerable confusion in the oceanographic community with 

regard to TEM, partly because of the success of the Gent and McWilliams (1990) scheme, 

and partly because GM was presented in a vacuum - without any reference to studies of 

the eddy problem in the atmosphere. Here, the TEM approach is correctly applied to 

the ocean, by including both momentum and temperature fluxes. 

Chapter 2 introduces the TEM approach and presents the systematic scaling of the 

primitive equations for eddies that are assumed to be quasigeostrophic. This results in 

TEM sets for both zonal mean and time mean flows. 

The governing TEM sets have two advantageous features; (1) Eddy disturbances 

are represented by one term only - an eddy PV flux. (2) The prognostic velocity is 

that of the "residual mean circulation", which under certain assumptions is equal to an 

"effective transport velocity" (Plumb and Mahlman (1987)). This is the relevant velocity 

for understanding meridional atmospheric tracer transport. 

The eddy PV flux term appears as an effective body force in the mean momentum 

equations. For zonal flows, this PV flux is identically equal to the divergence of the 

Eliassen-Palm flux. With this interpretation of the body force, the propagation of eddy 

wave activity and the effect of the eddies on the mean flow is transparent. Equating the 

time mean eddy flux with the divergence of another flux yields a similar understanding 

for transient eddies in time mean flows (Plumb (1986)). 

The Eliassen-Palm flux proves to be powerful when incorporating the role of bound- 

aries, particularly when used in conjunction with the PV sheets introduced in section 

2.2.2. This is because PV sheets are regions of concentrated Eliassen-Palm flux diver- 

gence representing PV fluxes associated with boundary temperature distributions. 

When Reynolds stresses (eddy momentum fluxes) are neglected in the TEM approach 

for zonal flows, the scheme reduces to that advocated by Gent and McWilliams (1990), 

although the implementation is different. The analogy is not so exact for the time mean 

flows because the transformed time mean velocities in chapter 2 are different from those 

used by Gent and McWilliams. Their parameterization scheme has led to improvements 
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in water mass distributions and transport, because they transform the density equation 

such that the eddy density flux terms are absent. Hence they are successful in combating 

the overly diffusive nature of numerical ocean models. However, failure to transform 

the momentum equations leads to vorticity being arbitrarily transferred down the mean 

gradient. By using the complete TEM framework here, we are able to encapsulate both 

the heat and momentum transporting properties of the eddy field without having to 

parameterize them separately. 

When the eddy PV flux is parameterized, it is represented through a flux-gradient 

relationship. Thus, the parameterized eddies act to transfer PV down its mean gradient 

with transfer coefficients K. For zonal mean flows, the K's are chosen to satisfy an 

integral constraint on the eddy flux to ensure that the eddies act only to redistribute 

momentum in the flow. A parameterized model for time-mean flows is not presented, so 

we circumvent the difficult problem of having to establish momentum constraints for the 

time mean eddy flux of PV. 

The downgradient closure for the PV flux does not necessarily mean that momentum 

is transferred downgradient (e.g. ÜV ^ -küy). As argued by Green (1970) and Marshall 

(1981), the pressure gradient forces act to ensure that the momentum of a fluid parcel is 

not conserved upon an eddy displacement. Hence, flux-gradient momentum transfer by 

the eddies is not appropriate. 

In chapter 3, the theoretical arguments and eddy PV closure were tested by compar- 

ing a three-dimensional, eddy-resolving, HPE model to a parameterized model. To my 

knowledge, this is the first time that the TEM set of equations have been made us of 

in a prognostic manner. Previous studies in the atmosphere that used the transformed 

Eulerian mean have all been diagnostic in nature. The experiments in this chapter focus 

on zonal flows because it is the simplest context in which to proceed. Here, eddy closure, 

although problematic, is at its most transparent. 

For experiments which simulated stress-driven flow in a /3-plane channel, mean fields 

and eddy transfer statistics were compared between the eddy-resolving and the param- 
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eterized models. The comparison shows that the transformed Eulerian mean approach 

offers advantages over existing parameterization schemes. The parameterized model zonal 

mean fields closely matched those of the eddy resolving calculation in the equilibrated 

state. The close resemblance was achieved by correctly representing the transfer charac- 

teristics of the eddies. The eddy-resolved eddy-forcing term consisted of boundary sheets 

of eddy PV flux with small fluxes in the interior. The depth-integrated eddy-forcing of 

the mean zonal flow showed that the eddies acted to transfer momentum upgradient, 

thus strengthening and sharpening the jet. This is the first time, to my knowledge, that 

up-gradient momentum transfer has been successfully represented in a primitive equation 

ocean model. 

The structure and size of this PV flux and its depth-integrated character was re- 

produced in the parameterized model. The meridional circulation in the parameterized 

model vanished so that there was no advection of temperature by the residual mean 

circulation. This agreed well with the diagnosed residual mean circulation in the eddy- 

resolving calculation in which the stress-driven Eulerian mean circulation is balanced by 

the circulation associated with the eddy temperature fluxes. 

Calculations in two more flow configurations further highlighted the advantage of 

our representation of quasigeostrophic eddies through a PV flux. The first was another 

comparison between eddy-resolving and the parameterized models. It concerned the spin- 

down of a baroclinic zone. The sloping baroclinic zone spins down due to temperature 

transfer through finite-amplitude baroclinic instability which releases the available poten- 

tial energy in the flow. However, after a finite amount of time, a cessation of mean flow 

energy release occurs due to the stabilizing effect of the planetary vorticity gradient. This 

stabilization evident in the eddy-resolving model is successfully reproduced in the param- 

eterized model. Implementation of the Gent and McWilliams parameterization scheme, 

which is not based on PV transfer and PV gradients, results in a completely spun-down 

temperature field with no zonal mean flow. Thus, the physics of /^-stabilization is absent 

from the Gent and McWilliams approach. 
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In the second set of calculations, the parameterized model was applied to the atmo- 

sphere. It focused on the eddy forcing of the midlatitude tropospheric jets. The TEM 

approach gave realistic latitudes for the cores of the jets, and a realistic structure of the 

low-level winds when compared to observations. The Gent and McWilliams scheme was 

shown to be only a marginal improvement over not incorporating the eddies at all. 

In recognition that the majority of ocean flows of interest cannot be modeled as zonal 

mean flows, chapter 5 explored the time mean TEM set presented in chapter 2. The 

objective was to understand the nature of the closure for the time mean eddy PV flux. 

The HPE model was employed to study the eddy transfer statistics in a double-gyre 

ocean. Diagnosed PV fluxes showed swirl patterns with fluxes that were directed up, as 

well as down, the mean PV gradient. Thus the flux-gradient relationship was invalidated 

for the time mean PV transfer. This arises through advection of eddy enstrophy by the 

mean flow, which gives rise to a nonlocal contribution to the eddy fluxes and results in 

upgradient eddy transfer. In spite of this, as Marshall and Shutts (1981) show, if the 

eddy statistics are quasigeostrophic then the eddy PV flux can be separated into two 

parts; a rotational, non-divergent flux and an irrotational, divergent flux. The rotational 

component balances the mean flow advection of the eddy enstrophy and is associated 

with the spatial growth and decay of the eddies. They are dynamically inert since they 

do not force the mean flow. The divergent flux balances the enstrophy dissipation, and 

as the diagnosed model results show, is directed down the mean PV gradient in the eddy 

intense jet region. 

Thus a scheme is proposed in which the eddies are represented by a divergent eddy flux 

of PV with closure for this term focusing on downgradient PV transfer. The governing 

equations in which the only term representing the eddies appears as divergent eddy flux 

of PV are devised and stated. 

This work, although addressing a difficult problem, has yielded the simple result that 

the correct way to parameterize quasigeostrophic eddies in numerical ocean simulations is 

through quasigeostrophic potential vorticity transfer. Of course, other parameterizations 
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will be tried, but the TEM formulation and in the eddy flux of PV presented in this 

thesis is the natural approach to follow. 

6.2    Future Work 

The most tempting and the most obvious extension of this thesis work would be to 

implement the time mean approach in a parameterized model of three-dimensional flow. 

The first attempt should be in the double-gyre configuration used in the eddy resolving 

study of chapter 5. I believe that it should be of a qualitative nature to determine if 

both the large scale mean flow patterns and regions of eddy forcing of the mean flow 

are reproduced. In effect, it would be the direct test of the arguments put forward in 

section 5.3. If, as the eddy-resolving three-dimensional calculation suggests, the reasoning 

behind the downgradient PV transfer representation is valid, then a detailed comparison 

between eddy resolving and parameterized models can be made. 

In order to perform the above calculations, much thought and consideration will have 

to be given to the subtlety of the non-vanishing normal component at vertical bound- 

aries, of the redefined residual mean velocity defined in equation 5.27. This normal flux 

would act to render non-conservation of mass, if the normal fluxes are not compensatory, 

and therefore tremendous numerical difficulties. It may be that this normal velocity is 

vanishingly small in some dynamical sense and can be justifiably set to zero with appro- 

priate scaling arguments. Alternatively, the ad-hoc condition that this normal velocity 

vanishes could be applied and investigated. It is of course, much more appealing if the 

former is the case, and if so, would yield, through equations 5.33 and 5.34, a compelling, 

physically based method in which to represent eddies in ocean circulation models. 

To complete the closure, the size and distribution of the transfer coefficients (the K's) 

need to be specified. The magnitude of the K's in any particular region should mirror 

the eddy activity there. The K's should be large in the vicinity of intense jet regions 

with significant enstrophy cascade and relatively small in the quiescent gyre interiors. In 
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regions where the gradients of PV vanish, the choice of K is not all that critical because 

the parameterized flux will vanish anyway, due to the K's acting on a zero Vq (as shown 

in chapter 4). 

The opening sentence of this thesis states: "This thesis addresses the challenge of 

adequately representing the transfer properties, and the forcing of the mean flow, by 

unresolved eddy processes in numerical ocean simulations". Fundamentally, the repre- 

sentation problem does not have a solution. However, the method offered in the thesis 

does go a long way to offer an approach that adequately incorporates unresolved eddy 

transfer properties and their effects on the mean flow, and so provides a powerful con- 

ceptual framework for representing eddies in ocean circulation models. 
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Appendix A 

Model details 

The numerical model used in this study is the MIT atmosphere-ocean hydrostatic, prim- 

itive equation (HPE) model described by Marshall (1997a,b). The code is written in 

Fortran and designed to exploit contemporary parallel processing computers. The design 

allows array processing features to map onto parallel architecture, permitting large in- 

tegrations to be carried out in a relatively short period of time when compared to serial 

processor machines. 

A.l    Model equations 

The equations used in the model code are written in terms of a generic vertical coordinate 

r. They have the same form as the conventional oceanic HPE's in z-coordinates which 

are isomorphic with the atmospheric HPE's in p-coordinates, so the code can be used to 

solve either equation set. Hence the model code has the working title of "MITgcmUV" 

where UV is the acronym for "ultra-versatile". 

Av + /kxv + — Vr4>'   =   T, (Ala) 
Po 

tnhDtr - b' + —dr<t>'   =   enhTr, (Alb) 
Po 

Vr-v + drr   =   0, (Ale) 
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b'   =   b\9,S,r), (Aid) 

Dt6   =   Qg, (Ale) 

DtS   =   Qs, (Alf) 

where v = (u, v, 0) is the horizontal components of velocity, <f) = gz is the geopotential, b 

is the buoynacy, 9 is the potential temperature, and S is the salinity. T are sources/sinks 

of momentum, and Qg and Qs are sources/sinks of potential temperature and salinity 

respectively.  enh is a flag, which is set to 0 for hydrostatic calculations or 1 when the 

model is run non-hydrostatically. 

In the ocean using z-coordinates: 

r   =   z (A2a) 

f   =   w (A2b) 

p0   =   p(20,35,0)   (~ 1035kg m-3 using peos80) (A2c) 

b'(9,S,r)   =   Zl{p{0jSjr)_Po) (A2d) 
Po 

produces the system of equations: 

rf(V + /kxv + - Vzp   =   T, (A3a) 
Po 

enhdtw + h — dzp   =   tnhTw, (A3b) 
Po       Po ' 

Vz-v + dzw   =   0, (A3c) 

P   =   P(6,S), (A3d) 

dtö   =   Qe, (A3e) 

^-S1   =   a- (A3f) 

In the atmosphere using p-coordinates: 

r   =   p (A4a) 

r   =   w (A4b) 

Po   =   1 (A4c) 
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b'(9,S,r)   =   -%&ff (A4d) 

produces a system of equations for the atmosphere 

Av + /kAv + Vp^' = T (A5a) 

dp(j)' + a' = 0 (A5b) 

Vp-v + dpw = 0 (A5c) 

öl = ot0— (A5d) 

Dt6' + ojdpeo   =   ~ (Abe) 
1  Cp 

where a = 1/p is the specific volume, and it has been convenient to split out a reference 

state (90, a0 and (j>0 in the following manner: 

9   =   90 + 9' 

a   =   a0 + a 

where the reference state satisfies the equations of a resting state: 

90   =   e0(p) (A6a) 

a0   =   -(?-)   90 (A6b) 
P   \PcJ 

dp(j>o   =   -a0 (A6c) 

with the boundary condition that <f>0(p = ps) = <f)s(x, y). 

A.2    MITgcmUV solution procedure 

Equations A.l can be expressed as a set of P.D.E's. These equations form the basis of 

the MIT atmosphere-ocean model. 

In equations Al, the total pressure perturbation can be divided into three parts; 

a surface part, <j)'surj(x,y), a hydrostatic part <f>'h d(x,y,r) and a non-hydrostatic part 
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<l>'nh{x,y,r) so that 

(f>'(x, y, r) = <f>'surf(x, y) + (f>'hyd{x, y, r) + enh<j)'nh{x, y, r) (A7) 

Whether ft is pressure (ocean model) or geopotential (atmospheric model), the horizontal 

pressure gradient term becomes 

— Vr<t>'surf = g^rV 
Po 

where 77 is the free-surface height in units of r. Substituting A7 into equations Al gives: 

dtV + gVrV + tnh — ^A'nh    =     &v (A8a) 
Po 

dr 1 
enh-^T + tnh — 9rftnh   =   €nhGf (A8b) 

Ot p0 

\fthyd   =   b' (A8c) 
Po 

Vr-v + drr   =   0 (A8d) 

b'   =   b'(0,S,r) (A8e) 

dt9   =   Ge (A8f) 

dtS   =   Gs (A8g) 

where 

G„   =   -v-Vrv--Vr^ + ^ 
Po 

Gf   =   -v • Vrr + Tt 

Ge   =   -v-Vre+Qg 

Gs   =   -v-VrS+Qs 

Note that in the hydrostatic limit (enh = 0), equation A8b vanishes. The hydrostatic 

pressure is found by integrating A8c with the boundary condition that fthyd{r = rsurf) = 

0: 

ir dr<t>'hyddr = [(ß'hyd]rr7
f = _£'"" Pob'dr 

frsurf 

<t>hyd(X, V, r') = - Pob'c 
Jr' 

. „   dr 
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We discretize equations A8 in time as follows: 

v<B+1>+AfcVr»7<B+1> + ^^Vr^
(B+1) = v* (A9a) 

Po 

^(r^ + jWj^ = enhr* (A9b) 

-dA'hy}
n) = b'{n) (A9c) 

Po 
Vr.v(n+l)+drf(n+l) = Q ^Agd^ 

yin) = b>(Q(n)iS{n)^ (Age) 

[1 - drK
r

edr] 0{n+1) = 0* (A9f) 

[1 - drK
r

sdr] ^n+1^ = 5* (A9g) 

where 

v* ■ vW + AiGln+|) 

r*   = rW + AtCf*^ 

Ö*   = 0(n) + AttS^^ 

5*   = S(n) + AtG{s+'} 

An equation for 77 is obtained by integrating the continuity equation over the entire depth 

of the fluid (R(x,y)), using Leibniz formula: 

frsurf 

<r-r3UTf JR{xy) 

Where eri is a flag to distinguish between a free-surface equation (eri = 1) or the rigid-lid 

approximation (eri = 0). Discretizing in-time: 

eW7?(n+1) + A*Vr • rurf v<n+1W = erlr)W (A10) 
jR(x,y) 

Substituting A9a into A10, assuming enh = 0 yields a Helmholtz equation for rfn+l^: 

eriv
{n+1) ~ Vr • At2g(rsurf - R(x, y)) Vrr/"

+1> = t]* (All) 
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where 

rf = erl7]{n) - AtVr ■ rurf w*dr 
jR(x,y) 

When the model is non-hydrostatic (enh — 1) we need an equation for <j>'nh. This is 

obtained by sustituting A9a and A9b into A9d: 

yr + 9rr] 4>'nkin+1) = || (VP • V** + drf*) (A12) 

where 

v** = v* - AtgVrr](n+l) 

Finally, the horizontal velocities at the new time level are found by: 

V(n+D = v** _ €nh AVr^) (A13) 
pcsz 

and the vertical velcity is found by integrating continuity vertically. 

A.3    Boundary conditions 

I make the rigid-lid approximation where the upper surface is held fixed and then interpret 

it to exert a pressure on the fluid. 

Upper and lower boundary conditions 

q and ip 

At the upper and lower boundaries there exists an established temperature distribution, 

equation (2.5) provides inhomogeneous Neumann boundary conditions on ip at the hori- 

zontal boundaries since dip/dz is specified there. A computational and conceptual simpli- 

fication can be made if we replace the the inhomogeneous Neumann boundary conditions 

by homogeneous ones, following Bretherton (1966). Let us define the quasigeostrophic 

potential vorticity q(y,z), which is equal to q(y, z) in the fluid interior, except adjacent 

to the horizontal boundaries. Just inside these boundaries, we place delta-function sheets 
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of PV, Squpper and 6qiower, with the size and shape of each representing the magnitude 

and structure of the temperature distribution on the boundary. Thus: 

q = q + Squpper + 5qtower, (A14) 

where the delta-function sheets are given by 

OqUpper — jy2 QZ , OQlower —      ^2 ^ \Ai-d) 

The temperature perturbations at the upper and lower boundaries are set to zero, with 

the actual temperature variation appearing in the PV distribution as delta-function sheets 

of PV just interior to the boundary. 

E and t£J* 

The fact that we choose to employ homogeneous Neumann boundary conditions on ip 

(by setting the temperature perturbation to zero) dictates that the lateral temperature 

flux at the horizontal boundaries vanishes. Hence the component of the Eliassen-Palm 

flux (Ez) through the boundary is zero. This gives us the momentum integral constraint 

(equation (2.71)): 

/ V-EdV = 0. (A16) 
J Volume 

Moreover, this provides the needed boundary condition on the vertical component of 

the residual mean circulation at the upper and lower boundaries. Because the lateral 

temperature flux is zero on the boundary we have w* = 0. This is the same as that 

used by Gent and McWilliams (1990) and Gent et al. (1995) where they insist that the 

normal component of the 'eddy-induced' velocity at the boundary is zero. The upper 

and lower boundary conditions on W are discussed in detail by Treguier et al. (1997) 

mainly because they consider difficulties which arise with small vertical stratification in 

the surface mixed layer. To avoid erroneously large w* where isopycnals are vertical, 

the transfer coefficient is set to zero at the horizontal boundaries. This is in complete 

contrast to the transfer coefficients of PV which necessarily have to be nonzero to obtain 

the flux contribution due to the PV sheets. 
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